
Initial Guess Generation for Aircraft Landing

Trajectory Optimization

Efstathios Bakolas,∗ Yiming Zhao† and Panagiotis Tsiotras‡

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0150

We present a semi-analytic framework for the generation of initial guesses for
the numerical solution of the landing trajectory optimization problem of an air-
craft. Our approach consists of the following tasks: First, we introduce a geometric
framework for the generation of length-suboptimal, curvature-constrained, three-
dimensional curves, which satisfy the following requirements: 1) the projection
of the curves on the horizontal plane correspond to Dubins-like paths, and 2) an
aircraft traveling along these curves is descending continuously until it reaches its fi-
nal destination. Subsequently, we generate a time-parametrization of the geometric
path such that the control inputs required to traverse the geometric path do not ex-
ceed the control limits of the aircraft. The resulting time-parameterized path along
with the control input time histories is subsequently fed as an initial guess into a
numerical optimal control solver, such as the one introduced in Ref. [1]. Simulation
results demonstrate the advantages of employing the proposed initial guess genera-
tion scheme in terms of convergence of the numerical landing trajectory generation.
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I. Introduction

We consider the numerical landing trajectory generation problem for a three DOF dynamic
model of an aircraft. Typically, when an aircraft operates under normal flight conditions the final
stage of the flight (airport approach and landing) is governed by standard/conventional procedures
that are enforced and supervised by the air traffic control (ATC). In particular, after the aircraft
enters the final approach phase, it is directed by ATC to descend to an intermediate altitude and
fly level for miles before proceeding to another lower altitude or joining the final gliding path. This
conventional approach is inadequate for emergency landing scenarios for two reasons: First, the
landing path of the conventional approach is not optimal in terms of expected arrival time (ETA),
which is critical for an emergency landing scenario; moreover, such a path may not even be feasible
due to, say, changes over the aircraft dynamics and control authority caused by mechanical failures
such as loss of thrust. The second reason has to do with the increased workload of the pilot during
an emergency landing scenario. In particular, during a flight emergency, the pilot must perform
more tasks than usual in a highly stressful environment; this increases significantly the possibility of
flawed decisions and actions. One of the most critical tasks the pilot has to perform is the planning
and following of a trajectory that will result in a safe landing. These tasks could be overwhelming
to perform and complete in a timely manner.
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To avoid the aforementioned problems that may arise during an emergency landing scenario,
it would be helpful to automate the generation of optimal aircraft landing trajectories, that is,
without much intervention from the pilots. Numerical optimal control has already been applied
to the problem of aircraft trajectory generation. See, for example, Refs. [2–13]. However, not
much prior research accounts for the optimal landing problem. A related problem that has been
extensively investigated using optimal control theory is the abort landing problem in the presence
of wind shear, which has been studied in Refs. [12–14].

Numerical optimal control methods can be classified as direct and indirect methods, both of
which require a set of initial guesses to start the optimization process. It is also well known that
a good initial guess is helpful for the convergence of both methods. Direct approaches usually
have a larger domain of convergence, hence they are relatively more robust than indirect methods.
For this reason they have been used to generate initial guesses for indirect methods when highly
accurate solutions are required.15–17 However, for a complicated problem, like the landing trajectory
generation for a fixed-wing aircraft, convergence could be problematic even when using a direct
methods, in which case a good initial guess would be highly desirable.

An initial guess for a direct method includes the time history of all state and control variables
as well as any unknown parameters. In order for an initial guess to be dynamically feasible, it is
necessary that all state and control time histories satisfy the equations of motion, as well as the
control and state constraints, rendering the generation of a dynamically feasible initial guess not
an easy task.

In this work, we introduce a simple scheme for the generation of an initial guess for the nu-
merical optimal control solver DENMRA, introduced in Ref. [1]. The generation of the initial
guess is based on the suboptimal solution of a three-dimensional variation of the classical Markov-
Dubins problem,18 that is, the problem of characterizing curvature-constrained paths of minimum
length in the plane. It is shown that this approach, although fairly simple, can effectively improve
the convergence of the numerical optimal control solver for the minimum time landing trajectory
optimization problem.

We propose a semi-analytic framework for the generation of a set of initial guesses for the nu-
merical landing trajectory optimization problem, which consists of two parts. First, we generate a
geometric path which connects the initial and terminal configurations of the aircraft satisfying the
following requirements: (1) the projection of the three-dimensional curve onto the horizontal plane
corresponds to a Dubins-like path, that is, a composite path that solves the Markov–Dubins prob-
lem.18 A solution of the Markov–Dubins problem is formed, in turn, by concatenations of circular
arcs and line segments; and (2) an aircraft traveling along this path is continuously descending
until it reaches its final destination. Note that a geometric path that satisfies simultaneously the
previous two requirements may not necessarily be a solution of either the three-dimensional version
of the Markov–Dubins problem,19 nor a minimum-time trajectory of the Dubins airplane.20 Using
standard techniques from the optimal synthesis of the Markov-Dubins problem,21–23 we show that
a family of path primitives that consists of circular arcs, line segments and helical arcs is sufficiently
rich for generating composite paths that satisfy the previous geometric requirements for arbitrary
boundary conditions. Second, we generate a time-optimal speed profile along the geometric path
that captures succinctly the motion constraints of the aircraft while ensuring minimum time travel
along the path. Subsequently, we compute the time histories of the control inputs required so that
the aircraft can traverse the geometric path with the assigned speed profile using inverse dynam-
ics.24 We thus obtain a feasible trajectory along with the corresponding control inputs histories,
which can be subsequently used as an initial guess for the numerical optimization of the landing
trajectory.

The rest of the paper is organized as follows. In Sections II–III, we present a scheme for the
construction of a three-dimensional curvature constrained path. In Section IV, we discuss the
problem of assigning a time-optimal speed profile along this geometric path; this allows us to
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compute the control input histories through inverse dynamics. In Section V, we demonstrate how
the time parameterized curve along with the time histories of the corresponding control inputs,
which were characterized in Sections II–IV, can serve as an initial guess for the numerical solution
of the landing trajectory optimization problem. Simulation results are presented in Section VI.
Finally, Section VII concludes the paper with a summary of remarks.

II. Three-dimensional Landing Path Generation

In this section, we present an analytical framework for the generation of curvature constrained
paths in three dimensions. The paths are solutions of a steering problem for a particle of unit
mass that travels in a three-dimensional Euclidean space. Each path is generated by appropriate
concatenations of the elements of a sufficiently rich family of path primitives.

II.A. Kinematic Model and Problem Formulation

First, we consider the problem of characterizing geometric paths of minimal length connecting two
points in the three-dimensional space with prescribed tangents. The geometric problem can be
formulated equivalently as an optimal control problem of a particle of unit mass. In particular, the
kinematic model we employ is described by the following set of equations

x′ = cosψ cos γ, (1)

y′ = sinψ cos γ, (2)

z′ = sin γ, (3)

ψ′ =
u

Rmin(z)
, (4)

where (x, y, z) ∈ R
3 is the position vector, ψ ∈ [0, 2π) is the velocity heading of the particle, Rmin(z)

is a positive quantity, which may depend on the altitude z, γ is the flight path angle (control input),
and u is the second control input that determines the rate of change of the heading angle. The
prime denotes differentiation with respect to the arc length s. It is assumed, furthermore, that
γ ∈ [γmin, γmax] ⊆ [−π/2, π/2], and u ∈ [−δ, 1], where δ ∈ (0, 1] (i.e., the steering constraints may
be asymmetric25).

II.B. The Minimum-Length Problem

Next, we formulate the minimum-length problem as an optimal control problem.

Problem 1 Find the controls u∗ and γ∗ that steer the system described by Eqs.(1)-(4) from (x0, y0, z0, ψ0)
(prescribed) to (xf , yf , zf , ψf) (prescribed) such that the total length of the ensuing path sf (free) is
minimum.

The kinematic model described by Eqs. (1)-(4) for the special case when Rmin(z) = R̄, where
R̄ is a positive constant, for all z ≥ 0, was introduced by Chitaz and Lavalle in Ref. [20]. The
authors of Ref. [20] have shown that the minimum-length paths of this special case of Problem 1
are necessarily concatenations of the following path primitives: (1) circular arcs of turning radius R̄
and path angle γ = 0; (2) straight line segments, and (3) arcs of helical paths of radius R̄ and a path
angle γ ∈ {γmin, γmax}. The authors of Ref. [20] only discuss the structure of the optimal paths
for the special case of Problem 1 when Rmin(z) = R̄, without touching upon the more challenging
and practical problem of determining the minimum-length paths for a given pair of prescribed
initial and terminal configurations (i.e., the synthesis problem). The difficulty of the synthesis
problem stems from the large number of candidate optimal paths that arise when taking arbitrary
concatenations of the path primitives.20 As part of this work, we are interested in addressing the
problem of synthesis of suboptimal solutions of the following variation of Problem 1.
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Problem 2 Solve Problem 1, when z(s) > zf , for all s ≥ 0, and γmax = 0.

Note that besides the continuous descent requirement (γ ≤ 0), the formulation of Problem 2 does
not constraint the landing paths to satisfy a constant minimum turning radius constraint during
the whole landing phase, in contrast to the problem formulation of Ref. [20].

III. Suboptimal Synthesis of the Three-Dimensional Path Planning Problem

In this section, we investigate the problem of characterizing a nearly minimum-length path that
solves Problem 2 for any prescribed pair of boundary configurations. A straightforward way to
characterize suboptimal solutions of Problem 2 is to decouple the path planning problem into a
steering problem in the x-y plane (or more precisely R

2× S
1), and another steering problem in the

vertical plane (one-dimensional problem).

III.A. The Minimal Length Curve Problem in the Horizontal Plane

First, we address a path planning problem in the horizontal plane x-y, which will allow us to
address the three-dimensional path planning problem (Problem 2). To this aim, we assume that
the solution of the steering problem in R

2 × S
1 follows the Dubins pattern, that is, the projection

of a (suboptimal) solution of Problem 2 on the x-y plane is a concatenation of two circular arcs of
minimum radius interconnected by either a straight line or another circular arc as shown in Fig 1.
Note that the radii of the circular arcs of the projection of a path that solves Problem 2 on the x-y
plane need not be equal as a result of the fact that the steering capacity of the aircraft depends on
the altitude.

In order to obtain a simple formula for computing the minimum turning radius of an aircraft
as a function of the altitude, we first observe that the rate of change of ψ of an aircraft of mass m
traveling with speed v at an altitude z is given by26

ψ′ = −L(CL, v, z) sin φ

mv2 cos γ
, (5)

where φ is the bank angle, L = L(CL, v, z) is the lift and CL is the lift coefficient. If we assume
that v = v(z), we can obtain a rough approximation of Rmin as follows

Rmin(z; γ) =
mv2(z) cos γ

L(Cmax
L

, v(z), z) sin φmax

, (6)

where φmax and Cmax
L

denote, respectively, the upper bounds on the bank angle and the lift coef-
ficient. Equation (6) implies that an aircraft is less maneuverable, in terms of performing sharp

turns, at higher altitudes than it is at lower altitudes. Let R0
△
= Rmin(z0; 0), Rf

△
= Rmin(zf ; 0) and

Rm

△
= Rmin(zm; 0), where zm = (z0 + zf)/2. In addition, let us assume that along the first and the

last circular arcs of the Dubins path the quantity Rmin in Eq.(4) is constant and equal to R0 and
Rf , respectively. Furthermore, if the Dubins path consists of three circular arcs, then the quantity
Rmin along the middle arc is constant and equal to Rm. Note that R0 ≥ Rm ≥ Rf . In order to
obtain more conservative estimates of the Rmin, and thus reduce the risk of selecting a small value
for the minimum turning radius that can lead to dynamically infeasible paths for the aircraft, we
multiply R0, Rm, and Rf by a safety factor k0, km, and kf > 1, respectively.

Next, we formulate a minimum-length problem on the horizontal plane (x-y plane).

Problem 3 Given two configurations (x0, y0, ψ0) and (xf , yf , ψf) in R
2×S1, find a minimum-length

curve that connects the two configurations and belongs necessarily to the following family of paths

P △
= {C±(R0) ◦ C∓(Rm) ◦ C±(Rf), C

±(R0) ◦ S ◦ C±(Rf), C
±(R0) ◦ S ◦ C∓(Rf)}, (7)
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where C−(Rℓ) (C+(Rℓ)) and S denote a circular arc of radius Rℓ, where ℓ ∈ {0,m, f}, traversed
clockwise (counterclockwise) and a line segment, respectively, and ◦ denotes the concatenation of
two consecutive arcs of the composite path.

III.B. The Minimal Length Curve Problem in the Vertical Plane

Next, we address the steering problem in the vertical plane. The solution of the latter problem,
along with the solution of the previously discussed steering problem in the horizontal plane, will
allow us to characterize the (suboptimal) solutions for Problem 2.

In our subsequent analysis, we limit our attention to paths of piecewise constant path angle. In
particular, we assume that, along an arc whose projection on the x-y plane is an arc of a Dubins
path, the path angle γ is constant. Thus γ ∈ {γ0, γm, γf}, where γi ∈ [γmin, 0], i ∈ {0,m, f}. Note
that, ideally, one would choose γ = γmin along the whole path, since this choice would maximize the
vertical (downward) component of the velocity vector (and thus minimize the length of the descent
path). As we shall see shortly afterwards, this approach may not always furnish feasible solutions
to Problem 2. Before proceeding to a more detailed treatment of Problem 2, we will introduce
some new notation. Specifically, we denote by s1 ≤ s2 ≤ s3 the arc length of the ensuing path of
the vehicle when the latter reaches the endpoint of, respectively, the first, the second and the third
arc of the Dubins path, which is the projection of the solution of Problem 2 on the x-y plane. We
will always assume that s0 = 0. Note that, in general, sf 6= s3 for reasons we shall explain later on.
Next, we denote by z1 ≥ z2 ≥ z3 the altitude of the aircraft at s = s1, s = s2 and s = s3, when
γ = γmin. Specifically,

z1 = z0 + s1 sin γmin, z2 = z1 + (s2 − s1) sin γmin, z3 = z2 + (s3 − s2) sin γmin. (8)

∆z

γ

(a) The 3D view of the landing path.

~v0

~vf

R0

Rf

(b) The projection of the landing path onto the x− y plane.

Figure 1. A simple scheme for generating three-dimensional paths whose projections on the
x-y plane are Dubins paths.

Next, we examine the following four cases:
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replacemen

∆z

γ

(a) The 3D view of the path.

~v0

~vf

R0

Rf

(b) Projection of the landing path onto the x− y plane.

Figure 2. If the aircraft cannot decrease enough its altitude along the first two arcs of the
composite path, then it may have to perform one or more loops along the last helical arc of
the path.

Case I: z1 ≤ zf . If z1 = zf , then γ0 = γmin and γm = γf = 0, that is, the last two arcs of the
path correspond to steady and level flight at altitude z = zf , and, furthermore, sf = s3. If z1 < zf ,
then we set the path angle along the first arc to be the solution γ∗0 > γmin of the following equation

zf = z0 + s1 sin γ
∗
0 . (9)

Note that s1 = s1(γ
∗
0) and sf = s3. In addition, since for γ = γ∗0 , z(s1) = zf , it follows that

γm = γf = 0. The situation is illustrated in Fig. 3(a).
Case II: z1 > zf and z2 ≤ zf . If z2 = zf , then necessarily γf = 0, and the last arc of the path

corresponds to a steady level turns at z = zf . If z2 < zf , then we set the path angle along the
second arc to be the solution γ∗m of the following equation

zf = z1 + (s2 − s1) sin γ∗m. (10)

Note that s2 = s2(γ
∗
m). It follows as in Case I that γf = 0 and sf = s3. The situation is illustrated

in Fig. 3(b).
Case III: z1 > zf , z2 > zf and z3 ≤ zf . In this case, γ0 = γm = γmin. If z3 = zf , then γf = γmin

as well. If z3 < zf , then γ is taken to be the solution γ∗
f
> γmin of the following equation

zf = z2 + (s3 − s2) sin γ∗f . (11)

Note that s3 = s3(γ
∗
f
) and sf = s3. The situation is depicted in Fig. 3(c).

Case IV: z3 > zf . In this case, the downward velocity is not sufficiently large to guarantee
that an aircraft traversing a path whose projection on the x-y plane is a Dubins path can reach
the desired final altitude at the end of its course. In order to increase the length of the descent
path without changing the structure of the Dubins path in the x-y plane, we can add one or more
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loops along the last helical arc. In this way, the projection of the last arc on the x-y plane will
remain the same but the length of the ensuing path will be increased. In particular, if sloop(γ) is
the total length of a full loop at constant path angle γ, we wish to find the minimum path angle
γ∗
f
∈ (γmin, 0), and the minimum number of loops nloop ∈ {1, 2, . . .} such that

zf = z2 + (s3 + nloopsloop − s2) sin γ∗f . (12)

Note that in this case sf 6= s3. In addition, sf satisfies the following equation

sf = s3 + nloopsloop. (13)

The situation is illustrated in Fig. 3(d).

III.C. A Family of Path Primitives for the Three-Dimensional Path Planning Prob-
lem

By combining the solutions of the path planning problems on the horizontal and the vertical
planes, we characterize a family of path primitives that, when combined appropriately, furnish
near-optimal solutions of Problem 2. The family of path primitives we propose to use in order to
generate suboptimal solutions of Problem 2 is given by

P3D
△
= {H±(R0, γ

∗
0) ◦H∓(Rm, 0) ◦H±(Rf , 0),H

±(R0, γmin) ◦H∓(Rm, γ
∗
m) ◦H±(Rf , 0),

H±(R0, γmin) ◦H∓(Rm, γmin) ◦H±(Rf , γ
∗
f ),H

±(R0, γmin) ◦H∓(Rm, γmin) ◦H±(Rf , γmin),

H±(R0, γ
∗
0) ◦ S ◦H±(Rf , 0),H

±(R0, γmin) ◦ S ◦H±(Rf , 0),H
±(R0, γmin) ◦ S ◦H±(Rf , γ

∗
f ),

H±(R0, γmin) ◦ S ◦H±(Rf , γmin),H
±(R0, γ

∗
0) ◦ S ◦H∓(Rf , 0),H

±(R0, γmin) ◦ S ◦H∓(Rf , 0),

H±(R0, γmin) ◦ S ◦H∓(Rf , γ
∗
f ),H

±(R0, γmin) ◦ S ◦H∓(Rf , γmin)},

where H−(R, γ) (H+(R, γ)) denote a helical arc of radius R and path angle γ traversed clockwise
(counterclockwise) when observed from above, where R ∈ {R0, Rm, Rf} and γ ∈ {0, γ∗0 , γ∗m, γ∗f },
and S denotes a line segment.

IV. Minimum-Time Landing Trajectory Initial Guess Generation

In the previous section, we introduced a method for generating a geometric landing path using a
simplified aircraft model. The generated landing path, however, does not contain time information,
hence it cannot function as an initial guess for a numerical optimal control scheme. In order to be
able to use this geometric path as a reliable initial guess, we need to assign a time parametrization
along the path using an aircraft model that captures the aircraft dynamics more accurately. In this
way, the initial geometric path is combined with a time history of all state and control variables
of a high fidelity aircraft model, which are subsequently used as part of the initial guess for the
landing trajectory optimization problem.
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(a) z1 ≤ zf
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z
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z0

γ∗m

γmin

1st arc 2nd arc 3rd arc

s1 s2 s3 = sf

z1
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(b) z1 > zf and z2 ≤ zf

s

z

zf

z0
γmin

γ∗
f

1st arc 2nd arc 3rd arc

s1 s2 s3 = sf

z2

z3

(c) z1 > zf , z2 > zf and z3 ≤ zf

s

z

zf

z0
γmin

γ∗
f

1st arc 2nd arc 3rd arc

s1 s2 s3 sf

z2

z3

(d) z3 < zf

Figure 3. The path angle γ v/s arc length s profile.
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IV.A. Aircraft Model

We consider the following aircraft model for trajectory optimization, with kinematic and dynamical
equations given below:26

ẋ = v cos γ cosψ, (14)

ẏ = v cos γ sinψ, (15)

ż = v sin γ, (16)

v̇ =
1

m
[T −D(CL, v, z)−mg sin γ] , (17)

γ̇ =
1

mv
[L(CL, v, z) cosφ−mg cos γ] , (18)

ψ̇ = −L(CL, v, z) sinφ

mv cos γ
, (19)

where v is the speed, ρair(z) is the air density at altitude z, φ is the bank angle, and x, y, z and ψ
are the same as in (1)-(4). The aerodynamic lift force L(CL, v, ρair) and drag force D(CL, v, ρair)
are given by:

L (CL, v, z) =
1

2
ρair(z)v

2SwCL,

D (CL, v, z) =
1

2
ρair(z)v

2SwCD =
1

2
ρair(z)v

2Sw(CD0
+KC2

L),

where CD0
and K are constants determined by the aerodynamic properties of the aircraft, and Sw

is the main wing surface area. The control inputs in this model include the lift coefficient CL, the
bank angle φ, and the thrust T . The effect of the wind is not considered in this model. Because
the total time of a landing process is relatively short, the mass of the aircraft m is assumed to be
constant. In order to account for the air density change during the landing process, we adopt the
atmospheric model presented in Ref. [27]. The parameters in the model are listed in Table 1, where
Tmax denotes the maximum thrust.

Table 1. Aircraft model and relevant data.

m g Sw CD0
K Tmax

288,938 kg 9.8 kgm/s2 510.97 m2 0.022 0.045 1126.3 kN

IV.B. Time Parametrization and Inverse Dynamics

In this section, we present a scheme for assigning a speed profile, or equivalently, attaching a time
parametrization, to the geometric path characterized using the approach of Sections II–III. The
difficulty of the speed profile assignment problem has to do with the fact that the assignment has to
be made in a way such that the resulting trajectory (time parameterized path) is a feasible landing
trajectory for the dynamical model described by Eq. (14)–(19), that is, there exist controls with
which the aircraft can follow the path without violating any control and speed constraints.

The time-optimal parametrization method introduced in Ref. [24] is applied for tuning the pa-
rameters including k0, kf , and γmin, which are used in the geometric path planning method intro-
duced in Sections II–III. This time-optimal parameterization method is also applied for generating
a minimum-time trajectory initial guess for a numerical optimal control algorithm as discussed in
Section V.
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Because the given path is naturally parameterized using the path coordinate s instead of time,
a geometric path can be described by (x(s), y(s), z(s)) ∈ R

3, s ∈ [s0, sf ]. The equations of motion
can be rewritten with respect to s as follows (where prime denotes differentiation with respect to
s):

x′ = cos γ cosψ, (20)

y′ = cos γ sinψ, (21)

z′ = sin γ, (22)

v′ =
1

mv
[T −D (CL, v)−mg sin γ] , (23)

γ′ =
1

mv2
[L (CL, v) cosφ−mg cos γ] , (24)

ψ′ = −L (CL, v, z) sinφ

mv2 cos γ
. (25)

The following relations have been used for deriving (20)-(25):

dt =
ds

v
, (26)

ds =
√

d2x+ d2y + d2z, (27)

ψ = arctan
dy

dx
= arctan

y′

x′
, (28)

γ = arctan
dz

√

dx2 + dy2
= arctan

z′
√

x′2 + y′2
, (29)

ψ′ =
1

1 + (y′/x′)2
y′′x′ − y′x′′

x′2
=

x′2

x′2 + y′2
y′′x′ − y′x′′

x′2
=
y′′x′ − y′x′′
x′2 + y′2

, (30)

γ′ =
z′′x′2 + z′′y′2 − z′x′′x′ − z′y′′y′

√

x′2 + y′2
. (31)

The initial guess comprising of both state and control histories along with the previously pro-
posed geometric path is obtained by solving the following problem which is considered in Ref. [24]:

Problem 4 (Minimum-time path following) Given a geometric path (x(s), y(s), z(s)), where
s ∈ [s0, sf ] is the path coordinate, and the aircraft dynamics as described by Eq. (20)–(25), find the
optimal control time history C∗

L
(t), φ∗(t), T ∗(t) such that the aircraft follows the path in minimum

time without violating any state/control constraints or boundary conditions.

It has been shown in Ref. [24] that Eq. (20)–(25) form algebraic constraints on the state
variables for Problem 4. While Eq. (20)–(22) are automatically satisfied due to the geometric
relation between the path and the states variables ψ and γ, the control bounds on the lift coefficient
CL and bank angle φ can be converted into simple bounds on the speed v through Eq. (24) and
(25). Letting, for notational simplicity, E = v2/2, then Problem 4 is equivalent to the following
one-dimensional optimization problem:

min
T

J(s0, sf , E(s0), E(sf), T ) = tf =

∫

sf

s0

ds
√

2E(s)
,

subject to E′(s) =
T (s)

m
+ c1(s)E(s) +

c2(s)

E(s)
+ c3(s),

g
w
(s) ≤ E(s) ≤ gw(s), s ∈ [s0, sf ]

E(s0) = v20/2, E(sf) = v2
f
/2,

Tmin ≤ T (s) ≤ Tmax, s ∈ [s0, sf ]

(32)

10



where v0 and vf are the required initial and final speed at s0 and sf , respectively. The functions gw
and g

w
describe the constraints on E as determined by Eq. (24) and (25). For details regarding

the explicit derivation of gw and g
w
, the reader can refer to Ref. [24]. The functions c1, c2 and c3

are determined by the path as follows.24

c1(s)
△
= −CD0

(s)ρair(s)Sw
m

− 4Kmγ′2(s)

ρair(s)Sw
− 2Km cos2 γ(s)ψ′2(s)

ρair(s)Sw
, (33)

c2(s)
△
= −Kmg

2 cos2 γ(s)

ρair(s)Sw
, (34)

c3(s)
△
= −4Kmγ′(s)g cos γ(s)

ρair(s)Sw
− g sin γ(s). (35)

Once a geometric path is generated using the method introduced in Sections II–III, then the
minimum-time parametrization is solved using the algorithm presented in [24], which yields the
optimal speed profile solving Problem 4. Subsequently, the optimal thrust T ∗ can be computed
from Equation (32). The other control inputs are generated using inverse dynamics as follows:

C∗
L(s) =

2

ρairv∗2(s)Sw

(

T ∗(s)−mv∗(s)v∗′(s)−mg sin γ(s)
)

,

φ∗(s) = − arctan

(

cos γ(s)ψ′(s)

γ′(s) + g cos γ(s)/v∗2(s)

)

.

Before proceeding to the complete solution to the optimal landing problem, the previous time
parametrization method is also used to tune key parameters in the geometric path planning pro-
cess, since a well-tuned geometric path will generate better initial guesses, thus helping with the
convergence of the numerical optimization solver. For the aircraft model used in this paper, it was
found that the generated paths are mostly feasible with k0 = 5, kf = 2, and γmin = −7 deg. When
the generated geometric path is not feasible, free initial and final speed conditions are applied to
Problem 4 to generate a trajectory.

V. Landing Trajectory Optimization Using Numerical Optimal Control

It is important to note that the time-optimal parametrization method presented in the previous
section only provides a feasible trajectory, whose time optimality holds only when the aircraft is
constrained to travel along the specified path. In addition, the path itself, which is generated based
on the simplified aircraft model and certain heuristic methods presented in Sections II–III, is not, in
general, a time-optimal path of the higher fidelity aircraft model. Consequently, the corresponding
initial landing trajectory is not optimal as well.

In order to further improve the time optimality of the landing trajectory while ensuring its fea-
sibility, we formulate the emergency landing problem as a minimum-time optimal control problem,
and then apply a direct method to obtain an optimal solution by solving a relevant nonlinear pro-
gramming problem, utilizing the initial trajectory generation techniques introduced in Sections II–
III and IV. In the following, we briefly discuss about the nonlinear programming formulation of the
optimal control problem and the numerical optimization procedure to which the three-dimensional
landing trajectory initial guess is applied.

The minimum-time landing problem considered in this paper minimizes the total flight time tf
while satisfying the following three different types of constraints:

1. The differential dynamic constraints (14)-(19). For notational convenience, let X : R → R
6
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be the vector-valued function such that

X(t) = [x(t), y(t), z(t), υ(t), γ(t), ψ(t)]T .

Similarly, define U : R→ R
3 by

U(t) = [CL(t), φ(t), T (t)]
T,

and let f : R6 × R
3 → R

6 be the vector valued-function representing the right-hand-side of
the differential equations (14)-(19). Then the dynamic constraints can be written compactly
as

Ẋ = f(X,U). (36)

2. The state and control constraints. To be more consistent with the actual physics of the
aircraft, we impose bounds on the control variables. We also consider limits on the speed υ
and the flight path angle γ for flight envelope protection. These state and control bounds are
given below:

CL(t) ∈ [−0.27, 1.73], φ(t) ∈ [−30, 30] deg, T (t) ∈ [0, Tmax],

υ(t) ∈ [80, 270] m/s, γ(t) ∈ [−20, 0] deg.

Similar to (36), a function C : R6 × R
3 → R

10 is defined such that the state and control
bounds can be expressed by

C(X,U) ≤ 0. (37)

3. The boundary conditions. The states of the aircraft (position, speed, heading and flight path
angle) are fixed at the very beginning and the end of the flight, therefore we consider the
following boundary conditions:

X(t0) = X0, X(tf) = Xf .

These constraints are simply written as

Ψ(X(t0),X(tf)) = 0, (38)

where the domain and image of the function Ψ have appropriate dimensions.

With these three types of constraints, the minimum-time landing problem can formulated as
follows:

Problem 5 (Optimal control formulation of the aircraft minimum-time landing problem)

min
U

tf

subject to Ẋ(t) = f (X(t), U(t)) ,

C(X(t), U(t)) 6 0, t ∈ [t0, tf ] ,

Ψ(X (t0) ,X (tf)) = 0.

To solve this optimal control problem using nonlinear programming, the states and controls are
discretized on a mesh {ti}Ni=0 containing N grid points, with tN = tf and ti < ti+1 for 0 ≤ i ≤ N−1.
The discretized state and control variables plus the final time tf are the decision variables in
the NLP problem. The differential constraints are discretized and converted to finite difference
equations using a certain discretization scheme.1, 28 The finite difference equations are enforced
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as algebraic constraints on the decision variables. The other constraints, including the state and
control constraints, etc., are enforced at each grid point also as algebraic constraints. The reader
may refer to Ref. [28] for more details about discretizations of optimal control problems.

The mesh refinement algorithm DENMRA1 is used to convert Problem 5 into an NLP using the
trapezoidal integration rule. DENMRA uses density functions to determine the local distribution
of grid points. The trapezoidal rule is chosen to balance the convergence speed and accuracy while
ensuring the consistency of approximation.

The resultant NLP is solved using the sparse nonlinear optimization software SNOPT.29 The
three-dimensional landing trajectory introduced in Section IV is used as an initial guess to start
SNOPT.

It is well-known that the convergence of any NLP solver strongly depends on the quality of
the initial guess—with a good initial guess, the NLP solver is much more likely to converge. The
geometric path generated as in Section II–III is a ‘reasonably good’ landing path. Besides, the
feasibility of the trajectory along the path is ensured by the time-optimal parametrization technique
in Section IV (if such a parametrization exists, it renders the path feasible). Therefore, the initial
landing trajectory is usually feasible and close to the optimal solution, thus facilitating convergence
of the numerical scheme.

VI. Numerical Simulations

In this section, we present the numerical results obtained by applying the initial guess generation
approach presented in the previous sections to the landing trajectory optimization problem. In all
numerical experiments, DENMRA starts from a uniform mesh containing 25 grid points and ends
up with 40 grid points after three mesh refinements and a total of four rounds of optimization. The
geometric landing path generated as in Sections II–III is processed using the time parametrization
method to obtain the initial guess for starting the first round of optimization in DENMRA. After
the optimization result is obtained, it is used for mesh refinement as well as an initial guess to start
the next round of optimization. The final optimization result is considered feasible if the maximum
local integration error between each adjacent pair of grid points is smaller than 10−5.

The numerical results showed that the initial landing trajectory generated using the method
presented in Sections II–III and IV usually captures the key features of a locally optimal solution, as
it is illustrated in Figs. 4 and 5. In these plots, the red lines denote the initial guess paths, and the
blue lines with markers are the paths which correspond to the optimization results of DENMRA.
A difference between the initial guess and the final optimal trajectory is observed for some cases,
in particular, when the horizontal range of flight (horizontal distance between the aircraft’s initial
position and the airport) is small, as shown in Fig. 6. Simulation results indicate that the geometry
of the optimal landing trajectory is related to the ratio of the horizontal range to the altitude
change. When this ratio is large enough, the flight time is mainly determined by the aircraft’s
movement in the horizontal plane, and the projection of the optimal trajectory to the horizontal
plane resembles the typical circle-straight line-circle pattern of the Dubins’ path for shorter travel
time. When this ratio is small, the total fight time is primarily limited by the aircraft’s descent
dynamics—the aircraft must fly over certain horizontal distance to lose altitude, in which case the
optimal landing trajectory tend to exhibit more complex geometry.

A series of numerical experiments were performed to test the effectiveness of the Dubins’ type
initial guess generation method for improving the convergence of the DENMRA when solving the
minimum-time emergency landing problem. In all experiments, certain boundary conditions were
kept fixed, including the initial speed v0 = 240m/s, the final speed vf = 95m/s, the initial path
angle γ0 = 0deg, the final path angle γf = 0deg, the initial position x0 = 0km, y0 = 0km, and
the initial heading angle ψ0 = 0deg. The other boundary conditions were generated randomly
for each experiment. Specifically, the airport position was sampled uniformly from a disc on the
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Figure 4. Trajectory comparison, case 1.
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ground (zero altitude) with radius Rmax = 200 km, the runway heading being uniformly distributed
in [0, 2π], and the initial altitude being uniformly distributed between 6 km and 10 km.

In each experiment, after the boundary conditions were determined, a three-dimensional landing
trajectory was generated as discussed in Sections II-IV, and was subsequently applied as an initial
guess for DENMRA. As a comparison, in each experiment, an affine initial guess interpolating the
boundary conditions was also used as the initial guess for DENMRA, for comparison.

The details about the boundary conditions and sampling process for the numerical experiments
are shown below:

x0 = 0, y0 = 0, zf = 0, ψ0 = 0,

γ0 = 0, γf = 0, v0 = 240, vf = 95,

z0 ← U([6, 10])km, ψf ← U([0, 2π]), θ ← U([0, 2π]), ̟ ← U([0, 1]),

R = Rmax

√
̟, xf = x0 +Rmax cos θ, yf = y0 +Rmax sin θ,

where U([a, b]),is a random number uniformly distributed on the interval [a, b], Rmax is the maximum
cross range during the landing process, which was chosen as Rmax = 200 km in all the experiments.

A total of 500 experimental cases were performed. The statistical analysis of the results showed
that DENMRA converged successfully for 49.3% of all cases when an affine initial guess was used.
When the Dubins’ type initial guess is used, the convergence rate climbed to 99.2%, which is an
enormous improvement compared to an (uninformed) affine initial guess.

VII. Conclusion

In this paper, we introduced a simple–yet effective–way to construct an initial guesses for the
numerical solution of the aircraft landing trajectory optimization problem. Numerical experiments
showed that, in most cases, such a simple trajectory actually captures the salient features of the
optimal solution, thus facilitating the convergence of the NLP solver when applied as an initial guess.
It is expected that higher convergence rate of the NLP solver can be achieved after refining the
current geometric landing path generation method so that it always returns paths that correspond
to feasible trajectories for the higher fidelity model of the aircraft.
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