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In this paper we present two sequential multiresolution trajectory optimization algo-
rithms for solving problems with moving targets and dynamically changing environments.
For such problems, high accuracy is desirable only in the immediate future, yet the ultimate
mission objectives should be accommodated as well. An intelligent trajectory generation
for such situations is thus enabled by introducing the idea of multigrid temporal resolu-
tion to solve the associated trajectory optimization problem on a non-uniform grid across
time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state
and control variables.The numerical examples solved herein demonstrate the efficacy of the
proposed technique.

I. Introduction

A common line of attack for solving nonlinear trajectory optimization problems in real time1–4 is to break
the problem into two phases: an offline phase and an online phase. The offline phase consists of solving the
optimal control problem for various reference trajectories and storing these reference trajectories onboard
for later online use. These reference trajectories are used to compute the actual trajectory online via a
neighboring optimal feedback control strategy5–8 typically based on the linearized dynamics. This approach
requires extensive ground-based analysis and onboard storage capabilities.9 Moreover, perturbations around
the reference trajectories might not be small, and therefore applying the linearized equations may not be
appropriate.

To illustrate the previous point, consider the problem of finding the optimal control that will steer the
system from point A to the target point B under certain path constraints at a minimum cost. If the target
point B is far off, then there is no real advantage of finding the optimal trajectory online with high precision
from the starting point till the end. As we continue to move from point A towards the target point B, we
can get more accurate information about the surrounding environment (path constraints), which may be
different from what was assumed at the beginning when the trajectory was optimized. Moreover, the path
constraints and the terminal constraints may also change as the vehicle progresses towards point B. For
example, the target point B may not be stationary. One way of handling this problem is to use the receding
horizon approach,10–12 in which a trajectory that optimizes the cost function over a period of time, called
the planning horizon, is designed. The trajectory is implemented over the shorter execution time and the
optimization is performed again starting from the state that is reached at the end of the execution time.
However, if the planning horizon length does not reach the target B, the trajectory found using this approach
might not be optimal. One would like to solve the nonlinear trajectory optimization problem online for the
whole time interval, but with high accuracy only near the current time. Recently, some work has been done in
this direction by Kumar et al.9 and Ross et al.13 Kumar and Seywald9 proposed a dense-sparse discretization
technique in which the trajectory is discretized by placing ND dense nodes close to the current time and NS

sparse nodes for the rest of the trajectory. The state values at some future node are accepted as optimal
and are prescribed as the initial conditions for the rest of the trajectory. The remainder of the trajectory is
again discretized using a dense-sparse discretization technique, and the whole process is repeated again. The
algorithm can be stopped by using any adhoc scheme, for example, it can be terminated when the density
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of the dense nodes is less than or equal to the density of the sparse nodes. Ross et al.13 also proposed a
similar scheme by solving the discretized NLP problem on a grid with a certain number of nodes and then
propagate the solution from the prescribed initial condition by integrating the dynamics of the system for a
specified interval of time. The values of the integrated states at the end of the integration interval are taken
as the initial condition for solving the NLP problem for the rest of the trajectory, again on a grid with a
fixed number of nodes. The whole process is repeated until the terminal conditions are met.

In this paper, we present two algorithms, based on the Multiresolution Trajectory Optimization Algorithm
(MTOA),14,15 that autonomously discretize the trajectory with more nodes (finer grid) near the current time
(not necessarily uniformly placed) and use fewer nodes (coarser grid) for the rest of the trajectory, the latter
to capture the overall trend. Furthermore, if the states or controls are irregular in the vicinity of the current
time, the algorithm will automatically further refine the mesh in this region to capture the irregularities in
the solution more accurately. The generated grid is fully adaptive and can embrace any form depending on
the solution.

The paper is organized as follows. We first formulate the trajectory optimization problem and discretize
the continuous optimal control problem into an NLP problem. Next, we introduce two sequential trajectory
optimization schemes for solving problems with moving targets and/or a dynamically changing environment.
In due course of the paper, several challenging and practical examples are studied to demonstrate the efficacy
of the proposed algorithms.

II. Problem Formulation

We wish to determine the state x(·) and the control u(·) that minimize the Bolza cost functional,

J = e(x(τf ), τf ) +
∫ τf

τ0

L(x(τ),u(τ), τ)dτ, (1)

where e : R
Nx × R+ → R, τ ∈ [τ0, τf ], x : [τ0, τf ] → R

Nx , u : [τ0, τf ] → R
Nu , L : R

Nx × R
Nu × [τ0, τf ] → R,

subject to the state dynamics
ẋ(τ) = f(x(τ),u(τ), τ), (2)

the state and control constraints
C(x(τ),u(τ), τ) ≤ 0, (3)

where C : R
Nx × R

Nu × [τ0, τf ] → R
Nc , the initial condition

x(τ0) = x0, (4)

and the terminal constraint
ef (x(τf ), τf ) = 0, (5)

where ef : R
Nx × [τ0,∞) → R

Ne . The initial time τ0 is assumed to be given and the final time τf can be
fixed or free.

Note that the functions C and ef are assumed to be given at time t0, but may change as the vehicle moves
from x0 to x(τf ). This change is not known a priori so it cannot be modeled via the explicit time-dependence
of C and ef in (3) and (5).

Next, we briefly describe the procedure for transcribing the continuous optimal control problem into an
NLP problem. For more details, the reader is referred to Refs. [14,15].

III. NLP Formulation: Discretizations on Dyadic Grids

Consider a set of dyadic grids of the form

Vj = {tj,k ∈ [0, 1] : tj,k = k/2j , 0 ≤ k ≤ 2j}, (6)

Jmin ≤ j ≤ Jmax, where j denotes the resolution level, k the spatial location, and Jmin, Jmax ∈ {1, 2, . . .}.
We denote by Wj the set of grid points belonging to Vj+1 \ Vj . Therefore,

Wj = {t̂j,k ∈ [0, 1] : t̂j,k = (2k + 1)/2j+1, 0 ≤ k ≤ 2j − 1}, (7)
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Jmin ≤ j ≤ Jmax − 1. Hence, tj+1,k ∈ Vj+1 is given by

tj+1,k =

⎧⎨
⎩tj,k/2, if k is even,

t̂j,(k−1)/2, otherwise.
(8)

The subspaces Vj are nested
VJmin ⊂ VJmin+1 · · · ⊂ VJmax ,

with limJmax→∞ VJmax = [0, 1]. The sequence of subspaces Wj satisfy

Wj ∩W� = ∅, j �= �.

For simplicity, we denote x and u evaluated at tj,k by xj,k and uj,k respectively.
Since we will be working on dyadic grids, we first express the trajectory optimization problem stated

in Section II on the unit interval t ∈ [0, 1] in terms of the new independent variable t using the following
transformation,

τ = t Δτ + τ0, (9)

where Δτ = τf − τ0.
We then convert the above mentioned optimal control problem into an NLP problem using a Runge-Kutta

(RK) discretization.14,15 To this end, let a nonuniform grid of the form

G = {tji,ki
: tji,ki

∈ [0, 1], 0 ≤ ki ≤ 2ji , Jmin ≤ ji ≤ Jmax, for i = 0, . . . , N,

and tji,ki
< tji+1,ki+1 , for i = 0, . . . , N − 1}. (10)

A q-stage RK method for discretizing the state dynamics is given by

xji+1,ki+1 = xji,ki
+ hji,ki

Δτ

q∑
�=1

β�f �
ji,ki

, (11)

where f �
ji,ki

= f(y�
ji,ki

,u�
ji,ki

, t�ji,ki
), y�

ji,ki
, u�

ji,ki
, t�ji,ki

are the intermediate state, control, and time variables
on the interval [tji,ki

, tji+1,ki+1 ], given by

y�
ji,ki

= xji,ki
+ hji,ki

Δτ

q∑
m=1

α�,mfm
ji,ki

, (12)

where hji,ki
= tji+1,ki+1 − tji,ki

, t�ji,ki
= tji,ki

+ hji,ki
ρ�, u�

ji,ki
= u(t�ji,ki

), for 1 ≤ � ≤ q, and q is referred to
as the stage. In these expressions ρ�, β�, α�,m are known constants with 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ 1. The scheme
is explicit if α�,m = 0 for m ≥ � and implicit otherwise. The cost functional is discretized by introducing a
new state and then using a RK discretization as mentioned above. Then, the subsequent NLP problem is to
find the variables X, U, Ũ, τf , that minimize

J = e(xjNt ,kNt
, τf ) + Δτ

Nt−1∑
i=0

(
hji,ki

q∑
�=1

β�L�
ji,ki

)
, (13)

subject to the following constraints

ζi = 0, i = 1, . . . , Nt − 1, (14)
xj0,k0 = x0, (15)

ef (xjNt ,kNt
, τf ) = 0, (16)

C(X, X̃,U, Ũ,G, G̃) ≤ 0, (17)

where

ζi = xji+1,ki+1 − xji,ki
− hji,ki

Δτ

q∑
�=1

β�f �
ji,ki

, i = 0, . . . , Nt − 1, (18)

3 of 19

American Institute of Aeronautics and Astronautics



L�
ji,ki

= L(y�
ji,ki

,u�
ji,ki

, t�ji,ki
), i = 0, . . . , Nt − 1, (19)

X = {xj0,k0 , . . . ,xjNt ,kNt
},

U = {uj0,k0 , . . . ,ujNt ,kNt
},

G̃ = {t�ji,ki
∈ [0, 1] : t�ji,ki

/∈ G, 0 ≤ i < Nt, 1 ≤ � ≤ q},

X̃ = {y�
ji,ki

: t�ji,ki
∈ G̃},

Ũ = {u�
ji,ki

: t�ji,ki
∈ G̃}.

If the optimal control problem does not have any constraints, then by RK discretization we mean RK
discretizations that satisfy the conditions in Ref. [16]. If the optimal control problem has only pure control
constraints, then by RK discretizations we mean RK discretizations that satisfy the Hager conditions;16

alternatively, the coefficients of the RK scheme satisfy the conditions given in Ref. [17]. If the optimal
control problem has state or mixed state/control constraints, then by RK discretizations we mean either
Euler, Trapezoidal, or Hermite-Simpson discretization. The restriction to the above mentioned schemes stems
from the fact that the convergence of these schemes for the optimal control problem has been demonstrated
in the literature.16–20

We are now ready to present the proposed sequential trajectory optimization schemes.

IV. Sequential Trajectory Optimization

Consider a set of dyadic grids Vj and Wj as described in Eqs. (6) and (7). Suppose g : D → R is specified
on a grid G (given by (10)),

U = {gj,k : tj,k ∈ G}, (20)

where gj,k = g(tj,k). By Ip(t; TG(t)) we denote the p-th order essentially nonoscillatory (ENO) interpolation
of U = {gj,k : tj,k ∈ TG(t)}, where TG(t) = {tj�,k�

}i+p
�=i ⊆ G, 0 ≤ i ≤ N − p − 1. The stencil TG(t) consists

of one neighboring point on the left of t and one neighboring point on the right of t in the set G, with the
remaining p − 1 points selected from the set G that result in the least oscillatory polynomial. For more
details on ENO interpolations the reader is referred to Refs. [21–23].

In order to solve an optimal control problem with a moving target and/or a dynamically changing
environment, in this paper we present two sequential trajectory optimization algorithms. The basic idea
behind the proposed algorithms is to solve the trajectory optimization problem at hand over the horizon
[τ1

0 , τ1
f ], and as we continue to move forward in time, we re-solve the optimization problem again on the new

horizons [τ i
0, τ

i
f ], where i = 2, . . . , NH , using the solution of the previous horizon as an initial guess. Here

τ1
0 = τ0, τ i−1

0 < τ i
0 < τ i−1

f , i = 2, . . . , NH , and NH is the number of horizons. If the final time is fixed, then

τ1
f = τ2

f = · · · = τNH

f = τf . (21)

For further analysis, let
Δτ i

ro = τ i+1
0 − τ i

0, i = 1, . . . , NH − 1, (22)

be the time interval after which we re-optimize the trajectory. The value of Δτ i
ro can be the same or different

for all i = 1, . . . , NH − 1 . For the case when Δτ i
ro are all the same for i = 1, . . . , NH − 1, that is, τ i

ro = τro,
for all i = 1, . . . , NH − 1, and the final time is fixed, the number of horizons is given by

NH = �(τf − τ0)/Δτro)�. (23)

Next, we present the sequential trajectory optimization algorithm STOA I.

IV.A. Sequential Trajectory Optimization Algorithm I (STOA I)

We first choose the minimum resolution level Jmin based on the minimum time step required to achieve the
desired accuracy in the regions of the solution where no constraints are activea, the threshold ε(t) (the sig-
nificance of which will be clear shortly), and the maximum resolution level Jmax. Then the proposed STOA

aThe minimum time step required to achieve a desired accuracy in the regions of the solution where no constraints are active
can be calculated using the well-known error estimation formulas for RK schemes.16,20,24,25
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I involves the following steps. First, we transcribe the continuous trajectory optimization problem into an
NLP problem using a q-stage RK discretization as described in the previous section. We use trapezoidal
discretization for the first iteration and switch to a high-order discretization for subsequent iterations. Next,
we set i = 1, iter = 1, initialize Gridi

iter = VJmin , and choose an initial guess for all NLP variables. Let us
denote the set of initial guesses by X i

iter. The proposed sequential trajectory optimization algorithm then
proceeds as follows:

STOA I

Step 1. Solve the NLP problem on Gridi
iter with the initial guess X i

iter on the horizon [τ i
0, τ

i
f ]. If Gridi

iter has
points from the level WJmax−1, go to Step 4.

Step 2. Mesh refinement.

(a) i. If the problem either has pure state constraints or mixed constraints on states and controls,
set Φi

iter = {xj,k,uj,k : tj,k ∈ Gridi
iter}, Nr = Nx + Nu.

ii. If the optimal control problem does not have any constraints or only pure control constraints
are present, set Φi

iter = {uj,k : tj,k ∈ Griditer}, Nr = Nu.
iii. In case no controls are present in the problem, set Φi

iter = {xj,k : tj,k ∈ Gridi
iter}

In the following, let Φi
iter denote the set constructed in Step 2a of the algorithm, that is, let

Φi
iter = {(φ�)j,k : � = 1, . . . , Nr, tj,k ∈ Griditer}.

(b) Initialize an intermediate grid Gridint = VJmin−1, with function values

Φint = {(φ�)Jmin,k : (φ�)Jmin,k ∈ Φi
iter, ∀ tJmin,k ∈ VJmin , � = 1, . . . , Nr}, (24)

and set j = Jmin − 1.

i. Find the points that belong to the intersection of Wj and Gridi
iter

T̂j = {t̂j,km
: t̂j,km

∈ Wj ∩ Gridi
iter, for m = 1, . . . , Nt̂, 1 ≤ Nt̂ ≤ 2j − 1}. (25)

If T̂j is empty go to Step 2c otherwise go to the next step.
ii. Set m = 1.

A. Compute the interpolated function values at point t̂j,km
∈ T̂j , φ̂�(t̂j,km

) = Ip(t̂j,km
, TGridint(t̂j,km

)),
where φ̂� is the �-th element of φ̂, for � = 1, . . . , Nr.

B. Calculate the interpolative error coefficient dj,km
at the point t̂j,km

,b

dj,km
(φ) = max

�=1,...,Nr

dj,km
(φ�) = max

�=1,...,Nr

|φ�(t̂j,km
) − φ̂�(t̂j,km

)|. (26)

If the value of dj,km
is below the threshold ε(t̂j,km

), then reject t̂j,km
and go to Step 2(b)iiF,

otherwise add t̂j,km
to the intermediate grid Gridint and move on to the next step.

C. Add to Gridint Nneigh points on the left and Nneigh points on the right of the point t̂j,km

in Wj .
D. If Nneigh = 0 add to Gridint points belonging to the set

(VĴ ∩ [tj,km
, tj,km+1]) \ Gridint,

else add to Gridint points belonging to the set

(VĴ ∩ [t̂j,km−Nneigh , t̂j,km+Nneigh ]) \ Gridint.

Here Ĵ = min{j + ĵ, Jmax}, where ĵ = 2 if iter = 1 else ĵ ≥ 2, ĵ is the number of finer
levels from which the points be added to the grid for refinement.

E. Add the function values at all the newly added points to Φint. If the function value at
any of the newly added points is not known, we interpolate the function value at that
point from the points in Gridi

iter and their function values in Φi
iter using Ip(·, TGridi

iter
(·)).

bNote that φ�(t̂j,k) ∈ Φi
iter for all t̂j,k ∈ T̂j and � = 1, . . . , Nr.
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F. Increment m by 1. If m ≤ Nt̂ go to Step 2(b)iiA, otherwise move on to the next step.
iii. Set j = j + 1. If j < Jmax go to Step 2(b)i, otherwise go to Step 2c.

(c) Terminate. The final nonuniform grid is Gridnew = Gridint and the corresponding function
values are in the set Φnew = Φint.

Step 3. Set iter = iter + 1. If the number of points and the level of resolution remain the same after the
mesh refinement procedure, terminate. Otherwise, interpolate the NLP solution found in Step 1 on
the new mesh Gridnew, which will be the new initial guess X i

iter. Reassign the set Gridi
iter to Gridnew,

and go to Step 1.

Step 4. New horizon:

(a) Set Gridi = Gridi
iter.

(b) Increment i by 1.

(c) Set τ i
0 = τ i−1

0 + Δτ i−1
ro .

(d) Terminate if τ i
0 ≥ τ i−1

f , otherwise set iter = 1, Gridi
iter = VJmin .

(e) Interpolate the solution of the previous horizon [τ i−1
0 , τ i−1

f ] given on Gridi−1 to Gridi
iter, which

will be our new initial guess X i
iter for Step 1c.

(f) Update information about the path constraints and the terminal constraints.

Step 5. Go to Step 1.

Remark 1. Although the STOA I will work for any form of ε(t), we recommend using on each horizon
Hi, i = 1, . . . , NH , the following expression,

ε(t) = ε̂E(max{0, t − α}), (27)

where

α =

⎧⎨
⎩ti+1

0 , i = 1, . . . , NH − 1,

tif , i = NH ,
(28)

ε̂ be at least of order hJmin = 1/2Jmin ,15 and E : [0, 1] → R
+ is such that E(0) = 1. For example, one may

choose E(t) = eβ(max{0,t−α}), where β ∈ R
+, for t ∈ [0, 1]. This choice implies that the threshold is constant,

is equal to ε̂ for t ∈ [0, α], and it varies with time for t ∈ (α, 1]. Such a choice stems from the fact that the
solution should be calculated with high precision till the initial time of the next horizon.

Remark 2. One should note that in STOA I each horizon Hi = [τ i
0, τ

i
f ], i = 1, . . . , NH , is mapped to [0, 1]

for discretizing the optimal control problem into NLP problem and hence the mesh refinement Step 2 is given
on the transformed domain [0, 1].

We demonstrate the above algorithm with the help of a simple, yet practical example, in which the
terminal condition is assumed to be changing with time.

Example 1
Consider the Zermelo’s problem taken from Ref. [8]. A ship must travel through a region of strong currents.
The equations of motion of the ship are

ẋ = V cos θ + u(x, y), (29)
ẏ = V sin θ + v(x, y), (30)

where θ is the heading angle of the ship’s axis relative to the (fixed) coordinate axes, (x, y) represent the
position of the ship, V is the magnitude of the ship’s velocity relative to the water, and (u, v) are the

cIt should be noted that although Gridi
1 = Gridi−1

1 on the transformed domain [0, 1] but both the grids Gridi−1
1 and Gridi

1

correspond to different time intervals, that is, [τ i−1
0 , τ i−1

f ] and [τ i
0, τ i

f ] respectively.
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velocity components of the current in the x and y directions, respectively. The magnitude and direction of
the currents are assumed to be,

u = −V y, v = 0, (31)

and the ship’s velocity V is assumed to be unity. The path constraint is the width of the river, and we
assume

0 ≤ x ≤ 6.8. (32)

The problem is to steer the ship in such a way so as to minimize the time necessary to go from a given point
A to another given point B. For this specific example, we assume the coordinates of point A to be

xA = x(0) = 0, yA = y(0) = −4. (33)

The target B is assumed to be moving. However, the trajectory of point B is not known in advance. Initially,
the coordinates of B are taken to be as follows

xB = x(τf ) = 6, yB = y(τf ) = 1. (34)

We assume (Step 4f of STOA I) that the information about the target is updated every time before the
re-optimization is done on a new horizon. We also assume that the trajectory of the target is given by

xB(τ) = 6 − 0.1τ, yB(τ) = 1 − 0.2τ. (35)

Hence, on each horizon Hi, where i = 2, . . . , NH , we have the following terminal constraints,

x(τ i
f ) = 6 − 0.1τ i

0, x(τ i
f ) = 1 − 0.2τ i

0. (36)

For the sake of simplicity, and so that the proposed algorithm terminates in a finite number of iterations,
we assume that if τ i

0 ≥ 5, for some i ∈ [1, NH ], then

x(τm
f ) = 6 − 0.1τ i

0, y(τm
f ) = 1 − 0.2τ i

0, (37)

for all m = i, . . . , NH .
We solved this problem on a grid with Jmin = 2 and Jmax = 7 for each horizon with

ε(t) = 0.01 e10 max{0,t−α}, i = 1, . . . , NH , (38)

where α as in (28). The other parameters used in the simulation are p = 3 and Nneigh = 0. A fourth-order
implicit Hermite-Simpson scheme14 was used as a high-order scheme for discretizing the continuous optimal
control problem into an NLP problem.

To solve this problem, we let Δτ i
ro ≈ 1 sec (i = 1, . . . , NH − 1). One way for finding the initial conditions

(x(τ i
0), y(τ i

0)) for the next horizon (Hi) is to integrate the dynamics of the system using the control found on
the previous horizon (Hi−1) for a duration of Δτ i

ro seconds and then use the integrated states at the end of
the interval [τ i−1

0 , τ i
0] as the initial conditions for solving the NLP problem on the new horizon (Hi). For this

example, we picked the initial time τ i
0 for each horizon Hi, i = 1, . . . , NH , as follows. For the first horizon

we set τ1
0 = 0 and for subsequent horizons we choose

τ i
0 = min

τ
{τ ∈ Gridi−1

τ : τ ≥ τ i−1
0 + 0.95}, (39)

where i = 2, . . . , NH ,

Gridi−1
τ = {τ : τ = (τ i−1

f − τ i−1
0 )tj,k + τ i−1

0 , ∀ tj,k ∈ Gridi−1}. (40)

The algorithm terminated after solving the problem on 6 horizons. The number of iterations taken by the
algorithm before the algorithm terminated on each horizon (iterf ), the maximum resolution level reached
on each horizon (Jf ), the number of nodes used by the algorithm at the final iteration on each horizon (Nf ),
along with the initial and the final times for all the horizons are shown in Table 1.

The computed trajectory found using the proposed algorithm, along with the grid point distributions
for different horizons are shown in Figures 1 and 2. In these figures, the initial point A is depicted by a
square and the target point B is depicted by a cross. As pointed out earlier, the target B is assumed to
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Table 1. Example 1. Target snapshots.

Horizon iterf Jf Nf τ0 τf

H1 3 4 9 0 5.6018
H2 3 4 9 1.0503 5.5198
H3 4 5 13 2.1677 5.4687
H4 6 7 17 3.1993 5.4965
H5 2 3 7 4.2043 5.5818
H6 1 2 5 5.2374 5.7538

be non-stationary, and for convenience of the reader, in Figures 1, 2 all the previous locations of B are also
shown in addition to the current position of target B. The optimal controls found for all the horizons are
shown in Figure 3. From Figures 1(a), 3(a), we see that the proposed algorithm used only 9 points out of 129
points of the grid V7 for solving the given problem on the first horizon [0, τf ]. The grid point distribution
1(b) shows that the points from the finer resolution levels V3, V4 are concentrated only near the initial time.
On the second horizon, we assume that the target B has moved to the new location. From Figures 1(c), 1(d),
and 3(b), we again find that the algorithm used only 9 points for discretizing the trajectory and the points
from the finer levels of resolution V3, V4 are again clustered near the current time. For the third horizon, the
algorithm used 13 points to find the optimal solution. From the grid point distribution in Figure 1(f), it is
evident that the algorithm started adding points from the finer resolution level, V5, near the location where
there should be a switching in the control, since the ship is approaching the shore. Moving on to the fourth
horizon, we see that, as the boat is approaching the shore, there should be a switching in the control. Hence,
in order to capture this control switching, the algorithm further added points at the finer resolution levels
V6, and V7, as can be observed from the grid point distribution for the fourth horizon (Figure 2(b)). For
the fifth and sixth horizons, the algorithm used only 7 and 5 points respectively for computing the optimal
solution. Since on the sixth horizon, we had τ6

0 > 5, the target was further assumed to be stationary located
at

x(τm
f ) = 6 − 0.1τ6

0 , y(τm
f ) = 1 − 0.2τ6

0 , (41)

for all m = 6, . . . , NH . Hence, the algorithm terminated after solving the problem on the sixth horizon. The
overall CPU time taken by STOA I to solve this problem was 5.1 seconds. The combined trajectory and the
control found on different horizons is shown in Figure 4.

Next, we incorporate the information of the trajectory profile of the target (35) in the optimal control
problem itself. Since the trajectory profile of the target is assumed to be given for the optimal control
problem at hand, the resulting problem can be solved in one go using MTOA.14,15 The results found using
MTOA are shown in Figure 4 and the overall CPU time taken by MTOA to solve this problem was 9.5
seconds. The minimum time (τf ) to steer the ship from point A to the target point B found using MTOA
is τf = 5.8637. We also solved the same problem using STOA I. For comparison purposes the results found
using STOA I are again shown in Figure 4. The number of iterations taken by the algorithm before the
algorithm terminated on each horizon (iterf ), the maximum resolution level reached on each horizon (Jf ),
the number of nodes used by the algorithm at the final iteration on each horizon (Nf ), along with the initial
and the final times for all the horizons are shown in Table 2. The overall CPU time to solve the problem
using STOA I was 6.3 seconds. Hence, we see that the cost found by solving the problem using MTOA is
less by 5−4 than the cost found using STOA I for the problem when the trajectory profile of the target is
assumed to be known. However, we see that the overall CPU time taken by STOA I is about two-thirds of
the overall CPU time taken by MTOA to solve the same problem.

IV.B. Sequential Trajectory Optimization Algorithm II (STOA II)

In this section, we present yet another sequential trajectory optimization scheme referred to as STOA II,
which takes full advantage of the multiresolution structure of the grid in the mesh refinement procedure so
that the previously computed information is retained, while moving from one horizon to the next. In order
to avoid notational complexities, and without loss of generality, we will assume in this section that the time
interval of interest is the unit interval t ∈ [0, 1] = [τ0, τf ]. Transformation (9) can be used to convert any
optimal control problem from the domain [τ0, τf ] to [0, 1].
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Table 2. Example 1. Target trajectory known.

Horizon iterf Jf Nf τ0 τf

H1 3 4 9 0 5.9065
H2 3 4 9 1.1075 5.8256
H3 3 4 11 2.2870 5.8648
H4 6 7 17 3.4051 5.8643
H5 1 2 5 4.4810 5.8642
H6 1 2 5 5.5184 5.8642

We choose the parameters Jmin, Jmax, and ε(t) as for the STOA I. Then the proposed STOA II involves
the following steps. First, we transcribe the continuous trajectory optimization problem into an NLP problem
using a q-stage RK discretization as described in the previous section. We use trapezoidal discretization for
the first iteration and switch to a high-order discretization for subsequent iterations. Next, we set i = 1,
iter = 1, ti0 = 0, initialize Gridi

iter = VJmin , and choose an initial guess for all NLP variables (X i
iter). Fix

J̄ = Jmin − 1. The proposed sequential trajectory optimization algorithm proceeds as follows:

Step 1. Solve the NLP problem on Gridi
iter with the initial guess X i

iter on the horizon [ti0, 1]. If Gridi
iter has

points from the level WJmax−1, go to Step 4.

Step 2. Find Gridnew using the mesh refinement step (Step 2) of STOA I.

Step 3. Set iter = iter + 1. If the number of points and the level of resolution remain the same after the
mesh refinement procedure then terminate, otherwise interpolate the NLP solution found in Step 1
on the new mesh Gridnew, which will be our new initial guess X i

iter, reassign the set Gridi
iter to Gridnew,

and go to Step 1.

Step 4. New horizon.

(a) Set Gridi = Gridi
iter.

(b) Increment i by 1.

(c) Set ti0 = tJ̄,i−1.

(d) If i = 2J̄ + 1 terminate, else go to the next step.

(e) Set Gridi− = {t : t ∈ Gridi−1 and t ≥ tJ̄,i−1}.
(f) If the number of points in the set {Gridi− ∩ VJmin−1} is less than p + 1, set Jmin = Jmin + 1.

(g) Set iter = 1, Vj = Vj \ (Vj ∩ [0, tJ̄,i−1)) (where j = Jmin − 1, . . . , Jmax), and Wj = Wj \ (Wj ∩
[0, tJ̄,i−1)) (where j = Jmin − 1, . . . , Jmax − 1). Find Gridnew using the mesh refinement step
(Step 2) of STOA I with Gridi

iter = Gridi−.

(h) Increment iter by 1 and reassign the set Gridi
iter to Gridnew.

(i) Interpolate the NLP solution given on Gridi− to Gridi
iter, which will be our new initial guess

X i
iter for Step 1.

(j) Update the information about the path constraints and the terminal constraints.

Step 5. Go to Step 1.

Remark 3. Although STOA II will work for any form of the threshold ε(t), we recommend choosing, on
each horizon, Hi, i = 1, . . . , NH ,

ε(t) = ε̂E(max{0, t − tJ̄,i}), (42)

where ε̂ is at least of order hJmin = 1/2Jmin ,15 and E : [0, 1] → R
+ such that E(0) = 1, t ∈ [0, 1]. This choice

implies that the threshold is constant and is equal to ε̂ for t ∈ [0, tJ̄,i] and varies with time for t ∈ (tJ̄,i, 1].
Such a choice stems from the fact that the solution should be calculated with high precision till the initial
time of the next horizon, which in this case would be tJ̄,i.
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Example 2
In this example, we consider the re-entry guidance problem of an Apollo-type vehicle taken from Ref. [26].
The equations of motion during the flight of the vehicle through the Earth’s atmosphere are as follows:

v̇ = − S

2m
ρv2cD(u) − g sin γ

(1 + ξ)2
,

γ̇ =
S

2m
ρvcL(u) +

v cos γ

R(1 + ξ)
− g cos γ

v(1 + ξ)2
,

ξ̇ =
v

R
sin γ,

ζ̇ =
v

1 + ξ
cos γ,

where v is the velocity, γ is the flight path angle, ξ = h/R is the normalized altitude, h is the altitude above
the Earth’s surface, R is the Earth’s radius, and ζ is the distance on the Earth’s surface of a trajectory of
an Apollo-type vehicle. The control variable is the angle of attack u. For the lift and drag the following
relations hold:

cD = cD0 + cDL cos u, cD0 = 0.88, cDL = 0.52, (43)

cL = cL0 sin u, cL0 = −0.505. (44)

The air density is assumed to satisfy
ρ = ρ0e

−βRξ. (45)

The values of the constants are

R = 209.0352 (105 ft),
S/m = 50, 000 (10−5 ft2 slug−1),

ρ0 = 2.3769 × 10−3(slug ft−3),
g = 3.2172 × 10−4 (105 ft s−2),
β = 1/0.235 (10−5 ft−1).

The cost functional to be minimized that describes the total stagnation point convective heating per unit
area is given by the integral

J(u) =
∫ τf

0

10v3√ρ dτ. (46)

The vehicle is to be maneuvered into an initial position favorable for the final splashdown in the Pacific.
The data at the moment of entry are

v(0) = 0.35 (105 ft s−1), γ(0) = −5.75 deg, (47)

ξ(0) = 4/R (h(0) = 400, 000 ft), ζ(0) = 0 (105 ft). (48)

The data prescribed at the unspecified terminal time tf for this problem are

v(τf ) = 0.0165 (105 ft s−1), γ(τf ) unspecified, (49)

ξ(τf ) = 0.75530/R (h(tf ) = 75530 ft), ζ(τf ) = 51.6912 (105 ft). (50)

The angle of attack is constrained to be between ±68 deg, that is,

|u| ≤ 68 deg . (51)

We have used STOA II to solve this problem with Jmin = 4, and Jmax = 7. The threshold used for this
problem was

ε(t) = 0.01e7 max{0,t−t3,i}, i = 1, . . . , NH . (52)

The other parameters used in the simulation for the mesh refinement step were p = 3 and Nneigh = 1.
A fourth-order implicit Hermite-Simpson scheme14 was used as a high-order scheme for discretizing the
continuous optimal control problem into an NLP problem. The algorithm terminated after solving the
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problem on 8 horizons and the overall CPU time taken by the algorithm was 41.2 seconds, out of which 22
seconds were used to compute the solution on the first horizon H1. For sake of brevity, we only show the
time histories of the control u, along with the grid point distribution for different horizons, in Figures 5, 6,
and 7. The number of iterations taken by the algorithm before the algorithm terminated on each horizon
(iterf ), the maximum resolution level reached on each horizon (Jf ), and the number of nodes used by the
algorithm at the final iteration on each horizon (Nf ) are shown in Table 1.

Table 3. Example 2.

Horizon iterf Jf Nf

H1 2 5 24
H2 2 7 27
H3 1 7 24
H4 1 4 11
H5 1 4 9
H6 1 4 7
H7 3 7 17
H8 1 7 13

IV.C. STOA I vs. STOA II

Both STOA I and STOA II have their own merits. STOA I will work for any user-specified time intervals
(Δτro), whereas the time intervals in STOA II are dyadic and fixed. On the other hand, STOA II takes
full advantage of the multiresolution structure of the grid in the mesh refinement procedure. Most of the
nodes in the grid for the new horizon are the nodes from the grid of the previous horizon. In STOA II most
of the points of Gridi

1 consist of the points belonging to Gridi− ⊂ Gridi−1, for which the solution is already
known. Hence, none of the previously computed information is lost while going from one horizon to the next.
Therefore, in order to provide an initial guess X i

1, i = 2, . . . , NH , for starting the NLP solver on horizon Hi,
the function values only at few additional points in the vicinity of the current time need to be interpolated
from the solution found on the grid Gridi−1 during the previous horizon Hi−1. Moreover, in STOA I the
algorithm always begins to iterate from the coarsest grid VJmin . In STOA II, since most of the points of
Gridi

1 consist of the points belonging to Gridi−, the algorithm need not necessarily start from the coarsest
grid, and in fact Gridi

1 may have nodes from finer scales resulting in faster convergence.
For both STOA I and STOA II, if the path constraints and the terminal constraints do not change

drastically, the algorithm for each successive horizon converges pretty fast since the solution of the previous
horizon is provided as an initial guess for solving the NLP problem on the current horizon. The CPU times
achieved using the current implementation show the merits of the proposed algorithms in terms of speed.
We should mention at this point that since all the computations presented in this paper were carried out in
MATLAB, the reported CPU times can be significantly reduced by coding the algorithms in C or FORTRAN.

V. Conclusions

In this paper, we have proposed two sequential trajectory optimization schemes to solve optimal control
problems with moving targets and/or under dynamically changing environments in a fast and efficient way.
The proposed algorithms autonomously discretize the trajectory with more nodes near the current time (not
necessarily uniformly placed) while using a coarser grid for the rest of the trajectory in order to capture the
overall trend. Moreover, if the states or the controls are irregular at a certain future time, the mesh is further
refined automatically at those locations as well. The final grid point distributions for all the horizons and for
both the examples considered in this paper confirm these observations. Given their simplicity and efficiency,
the proposed techniques offer a potential for online implementation for solving problems with moving targets
and dynamically changing environments.
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(f) Horizon 3. Grid point distribution.

Figure 1. Example 1 (Target snapshots). Trajectory along with the grid point distributions for horizons 1, 2, and 3.
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(f) Horizon 6. Grid point distribution.

Figure 2. Example 1 (Target snapshots). Trajectory along with the grid point distributions for horizons 4, 5, and 6.
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Figure 3. Example 1 (Target snapshots). Time history of control θ for all horizons.
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Figure 4. Example 1. Trajectory along with the time history of the control θ using three different multiresolution
strategies.
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Figure 5. Example 2. Control time history and grid point distributions for horizons 1, 2, and 3.
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Figure 6. Example 2. Control time history and grid point distributions for horizons 4, 5, and 6.
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Figure 7. Example 2. Control time history and grid point distributions for horizons 7 and 8.
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