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This paper offers experimental validation of several recently developed nonlinear con-
trol laws, derived from the theory of integrator backstepping, control Lyapunov functions
(CLF), and dissipativity, by implementing them on a spacecraft reaction wheel that is sus-
pended by a low-loss active magnetic bearing (AMB). The electromagnets of the AMB
are constrained by a generalized complementary flux constraint (GCFC). This constraint
allows one to operate the AMB with a large bias flux, to obtain a desired bearing stiff-
ness and force slew-rate, or with a very small (or even zero) bias flux for low-loss AMB
operation. Experimental evidence is provided to illustrate the role of the flux bias in the
control design and highlight the singularity issues associated with zero- and very low-bias
AMB operation. Specifically, the tradeoff between bearing stiffness, power consumption,
and power dissipation as a function of the bias is verified. Also, it is experimentally shown
that the singularity issues present in the standard nonlinear backstepping control laws can
be destabilizing in zero bias, and moreover, the newly developed CLF and passivity-based
control laws effectively eliminate the zero-bias singularity issues.

Nomenclature

AMB active magnetic bearing
FWB flywheel battery
CMG control moment gyroscope
ESCMG energy storage control moment gyroscope
CFS constant flux sum
CFC complementary flux constraint
GCFC generalized complementary flux constraint
ZB zero-bias
LB low-bias
PMSM permanent magnet synchronous motor
IPACS Integrated Power and Attitude Control System

I. Introduction

The frictionless operation of the active magnetic bearing (AMB) has been taken advantage of in sev-
eral industrial and scientific applications including vacuum pumps, hard disk drives, high-speed centrifuges
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and turbines, artificial heart pumps, power quality conditioning, un-interruptible power supplies, magnetic
catapults, high speed milling machines, magnetically levitated trains, etc.1–5 In such applications, control
algorithms are often employed to provide functionality that other types of bearing do not possess, such as
compensation for rotor imbalance and/or rotor shaft flexibility. Several practical advantages, for instance
the elimination of lubrication, vacuum operation, and the non-contacting nature, allow for low-maintenance,
long life-span, high-speed bearings. In spite of the long list of benefits, AMBs do have some fundamental
limitations including flux saturation, resulting in limited load capacity, and force slew-rate limits.

The primary interest of the aerospace community in AMBs is their application in flywheel batteries
(FWBs) and advanced control moment gyroscopes (CMGs).6 In a FWB, kinetic energy is stored in the
rotating flywheel and converted back and forth to electrical energy using a motor/generator. FWBs have
several advantages over the chemical batteries which are typically employed on spacecraft, such as long-
life, large depth-of-discharge, a well-defined state-of-charge, and do not require constant or taper charging
profiles.7 Furthermore, FWBs may be designeda to compete with chemical batteries in terms of specific
energy and typically outperform chemical batteries in terms of specific power. Advanced energy storage
control moment gyroscopes (ESCMGs) that employ AMB-levitated rotors act as both a FWB and an attitude
control actuator. These devices have been proposed to combine the functions of the attitude control and
energy storage subsystems of satellites. Such an Integrated Power and Attitude Control System (IPACS) is
projected to significantly reduce the satellite weight as well as double the mission lifespan.6 Furthermore,
ESCMGs are viewed as an enabling technology for space missions which require large attitude control torques
and high pulse-power capability, such as Space Radar.8,9

Highly efficient FWBs require the use of low-loss AMBs. Although the use of a vacuum-operated AMB
eliminates the mechanical losses in a FWB, electrical (magnetic core and Ohmic) and electromechanical
(eddy-current drag) losses are often significant. Since each of these power loss mechanisms is proportional
to the square of the electromagnet flux, it is imperative to minimize the flux required for rotor regulation to
achieve a FWB with efficient energy storage capabilities.

Control design for an AMB is a two step process. The net force along an AMB control axis is F = f1−f2,
where f1 and f2 are the attractive (non-negative) forces from electromagnets 1 and 2 that compose the AMB
control axis. The first step is to select an operational constraint between the electromagnets 1 and 2 so that
for given a desired net force F , there exists a unique choice for f1 and f2. Once the constraint is determined,
a stabilizing control law is constructed.

The customary constraint is called the constant-flux-sumb (CFS) constraint.10 Using this constraint, a
large flux bias is introduced into the electromagnets and the system is linearized about this operating point.
Since power dissipation is proportional to the square of the flux, AMB and FWB power losses are minimized
by operating the AMB with the smallest flux bias possible, ideally zero bias (ZB). However, the CFS biasing
scheme results in an uncontrollable linearization in ZB. On other words, the AMB employing the CFS
is linearly uncontrollable in ZB. Thus, one must avoid the customary biasing scheme when implementing
low-loss AMBs.

One solution to this fundamental, zero-bias, linear controllability limitation is to use a nonlinear con-
trol scheme where opposing electromagnets of the AMB are activated in a complementary fashion. During
operation, one electromagnet is turned off while the other is on and vice versa. Under this zero-bias com-
plementary flux constraint (CFC), the AMB retains nonlinear controllability, but AMB performance may be
sacrificed for low-loss operation, depending on the performance measure. For instance, bearing stiffness and
force slew-rate are reduced as the bias flux is decreased.

Tsiotras and Wilson11 propose a generalized complementary flux constraint (GCFC) for low-loss AMB
operation. The GCFC is an extension of the CFC flux biasing scheme that allows one to operate an AMB
with a large flux bias (to obtain a desired bearing stiffness and slew-rate) or with a very small bias (for
low-loss AMB operation). In fact, using the GCFC one may reduce the bias all the way to zeroc while
retaining controllability, a feature that is absent from the standard CFS biasing technique. Issues related
to the implementation of the GCFC are discussed in Refs. [12, 13]. Furthermore, this bias level may be
changed on-line to meet possibly time-varying performance requirements. The AMB’s performance under
the influence of a given control law is evaluated in terms of closed-loop bearing stiffness, damping, force

aFlywheel batteries for spacecraft are designed to spin with maximum angular velocities on the order of 60− 100 krpm.
bWhen current is used to represent the electromagnet state, this constraint is called the constant-current-sum (ccs) con-

straint.10
cIn this case, the GCFC corresponds to the CFC.
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slew-rate, power consumptiond, and power dissipation. Experimental testing, presented in Section V-B,
illustrates the relationship between the bias flux level and the various performance measures.

The low bearing stiffness implied by low-loss AMB operation introduces challenges into the control al-
gorithm design. In particular, ZB operation leads to control law singularities when using voltage-mode
amplifiers and standard nonlinear control design tools such as feedback linearization and integrator back-
stepping.11,14–16 Typically, a control law singularity manifests itself as an infinite control voltage command.
The control laws posed by Tsiotras and Wilson11 , derived from the theory of dissipativity and control Lya-
punov functions (CLF), effectively eliminate any singularity issues associated with voltage-mode, ZB and
very low-bias (LB) operation. These control laws map from the state-space (x, ẋ, φ) to R (u : D ⊆ R

3 → R),
where x is the rotor position, ẋ is the rotor translational velocity, φ is a control flux, and u is the control
law. It is shown that the singularity space -the space where the control law is not properly defined- for
the standard nonlinear techniques is a plane in R

3. The CLF control law reduces the singularity space
to a line in R

3 and the passivity-based technique eliminates the singularity altogether. This is significant
because an infinite control signal results whenever the state trajectory intersects the singularity space. Ex-
perimental tests, presented in Section V-A, show that these “spikes” in the voltage command significantly
degrade performance when employing backstepping for very LB and ZB operation. Furthermore, the CLF
and passivity-based control laws perform significantly better than the backstepping law for LB and ZB and
require less amplifier bandwidth to implement.

II. Dynamics and Energy Analysis of the FWB and the 1-DOF AMB
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Figure 1. A two-dimensional schematic of the PREMAG magnetically suspended reaction wheel.

A two-dimensional schematic of the flywheel battery used in this investigation is shown in Figure 1. The
rotor is regulated in the x− y plane by electromagnets 1 through 4. When the rotor is centered in the x− y
plane the nominal airgap between the rotor and stator is g0. Although omitted from the above schematic
for clarity, four additional electromagnets, located directly beneath electromagnets 1 through 4, allow for
control of the rotor tilt about the x and y axes. Although the full 6-DOF rotor control problem is worthy of
study, this work ignores the rotor gyroscopic effects and instead focuses on the simpler control problem which
assumes that four independent controllers can be designed to regulate the translational motion of the top
and bottom of the rotor in the x−y plane. Therefore, only the implementation of the GCFC and the control
law verification on of one AMB control axes is presented. A passive bearing supports the rotor’s weight in

dThe power consumed is the power delivered to the electromagnet coil terminals. The power dissipated is the portion of the
consumed power that is wasted in the AMB loss mechanisms.
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the z direction (out of the page) and is omitted in this discussion. In this particular FWB configuration,
the spin torque about the z axis is generated from a permanent magnet synchronous motor (PMSM) which
is integrated into the interior of the rotor hub.

A. The FWB and 1-DOF AMB Model

The flywheel rotational dynamics are
Jω̇ = τm − τd, (1)

where J is the rotor rotational inertia about the spin axis, ω is the rotor angular velocity, τm is the torque
applied by the spin motor, and τd is the electromagnetic drag torque. For ω ≥ 0, the PMSM acts as a
motor when τm ≥ 0 and as a generator when τm < 0. The electromagnetic drag torque, which results from
eddy-current induction in the surface of the rotor, always opposes the rotor angular velocity and is13,17,18

τd = pGΦ2ω = kdω, (2)

where p is the number of electromagnets, G is a constant that depends on the AMB geometry and material
properties, and Φ is the electromagnet flux. The drag coefficient kd may be experimentally identified through
rotor spin-down tests with τm = 0.

Since the ratio of rotor the radius r to the nominal airgap g0 is large, the customary “small airgap”
assumption is made. Consequently, the electromagnet forces in the x and y direction are decoupled. Hence-
forth, only the x-axis, 1-DOF AMB dynamics are considered. The translational equation of motion is

mẍ = F = f1 − f2, (3)

where m is the rotor mass, f1 and f2 are the electromagnet forces as illustrated in Figure 1, and F is the
total electromagnet force on the rotor in the x direction.
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Figure 2. Two-dimensional lookup table relating the
measured electromagnet current i(A) and measured ro-
tor position x (mils) to the electromagnet flux Φ =
h(i, x) (µWb).

The force from each electromagnet is18,19

fj =
Φ2
j

µ0Ag
, j = 1, 2 (4)

where Φ is the electromagnet flux, µ0 is the perme-
ability of free space, and Ag is the cross-sectional
area of the airgap. Generally, the flux Φ is a nonlin-
ear, multi-valued hysteresis function of the electro-
magnet current and the airgap: Φ = h(i, x). Under
some mild presumptions, a technique exists for ap-
proximating this function using a lookup table: See
the discussions in Refs. [12,13]. The function h(i, x)
that is produced from this approximation technique
may be viewed as a flux estimator, valid for recon-
struction of the flux from DC up to some bandwidth,
in terms of the readily available position and cur-
rent measurements. Using this technique, the effects
of AMB flux saturation are incorporated into the
model of h(i, x); a property that other force-current-
position relationships often neglect. The lookup ta-
ble for one of the electromagnets is shown in Figure
2.

The electromagnet coils in Figure 1 are represented by zero-resistance coils (i.e. ideal coils) and a resistor
R to account for the distributed winding resistance. Faraday’s law relates the rate of change of coil flux to
the voltage across the ideal coil: N Φ̇ = Vcoil. Kirchhoff’s voltage law relates the ideal coil voltage to the
terminal coil voltage Vapp. Using these principles, the resulting electrical dynamics are

Vapp,j = ijR+ Vcoil,j

= ijR+N Φ̇j, j = 1, 2 (5)

where i is the coil current. In this study, voltage-mode amplifiers are used to drive the electromagnet coils.
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Remark 1. (current-mode vs. voltage-mode amplifiers)
Electromagnet coils are typically driven by power servo amplifiers configured to operate in current mode or
voltage mode. In current mode, feedback internal to the servo amplifier is used to make the coil current track
a reference current. In voltage mode, feedback internal to the servo amplifier is used to make the voltage
Vapp in equation (5) track a reference voltage Vr. The transfer function of Vapp/Vr typically resembles a
low-pass filter with several hundred Hertz bandwidth.

B. Energy and Loss Analysis of the FWB and 1-DOF AMB

Energy is stored in the flywheel battery in the form of kinetic energy: K = 1
2Jω

2. Using K̇ = Jωω̇ and the
flywheel equation of motion (1), the FWB energy storage dynamics are

K̇ = Jω̇ω = τmω − τdω
= τmω − kdω2

= τmω − k̃d
J

2
ω2

= −k̃dK + τmω, (6)

where k̃d = 2kd/J . Without loss of generality, the angular velocity is assumed to be non-negative. When
acting as a motor, the electrical energy at the input terminals of the PMSM is converted to mechanical power,
τmω is positive, and the mechanical energy stored in the flywheel increases. When acting as a generator,
mechanical energy stored in the flywheel is converted to electrical power available at the PMSM’s terminals,
τmω is negative, and the mechanical energy stored in the flywheel decreases. The electromagnetic drag
torque introduces a stable, first order pole into the energy storage dynamics. Thus, even when drawing no
electrical power in generator mode (τm = 0) from the flywheel, the “charge” stored in the flywheel battery
will exponentially decay to zero with time constant 1/kd. Ideally, if kd = 0, the energy storage dynamics are
lossless and all of the input power is stored indefinitely in the FWB. Assuming that kd is proportional to
Φ2
0 (see Remark (2)) it is imperative to minimize Φ0 in the control design, ideally to zero, to maximize the

FWB energy storage efficiency.
In addition to eddy-current drag losses in the FWB, there are losses associated with the operation of

the electromagnets. Energy conversion from the AMB electrical input power to the mechanical force that
produces rotor translation takes place in the magnetic field of the AMB coil. The dynamics of the magnetic
field energy storage along the x control axis are18,19

Ėfld,j = −fjẋj + Vapp,jij − i2jR− pcore,j, j = 1, 2 (7)

where Efld is the energy stored in the electromagnet magnetic field, fẋ is the translational mechanical output
power, Vappi is the applied electrical input power, i2R is the Ohmic loss, and pcore represents the losses in
the electromagnetic core due to eddy-current generation and hysteresis. Observe that a portion of the power
supplied to (or consumed by) the bearing Vappi is converted into useful mechanical output power fẋ and
the rest is dissipated (i.e. wasted) as heat in the Ohmic and core loss mechanisms. Since the AMB Ohmic
and core loss are proportional to Φ2, it is imperative to minimize the flux required for rotor regulation to
minimize the energy dissipation in the AMB and maximize the AMB efficiency (i.e. the ratio of mechanical
output power to electrical input power).

Table 1. Summary of FWB and AMB power losses.18–20

Power Loss Proportional to

Ohmic loss in coil ∝ Φ2, i2R

eddy-current loss in core ∝ Φ2
max

hysteresis loss in core ∝ Φ1.5−2.5
max

eddy-current drag loss ∝ p,Φ2, ω2

Remark 2. (Low-Loss FWB and AMB operation)
The FWB and AMB power loss mechanisms are summarized in Table 1. The instantaneous power loss in
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each mechanism is proportional to the square of the magnetic flux. Since the flux is time-varying, one may
minimize the rms power losses in both the FWB and the AMB by minimizing the rms value of the flux
required to operate the AMB. When employing control designs that introduce a flux bias– for example, let
Φj = Φ0+φj where Φj is the total electromagnet flux, Φ0 is the constant flux bias, and φj is the control flux
in the jth electromagnet – the flux bias Φ0 should be minimized to reduce the wasteful energy dissipation in
the AMB and FWB.

III. AMB Flux Biasing and Performance Measures

Integral to every AMB control design is the selection of an operating constraint between the electromag-
nets that compose an AMB control axis. Since the total force along the x-axis, for example, is F = f1 − f2,
there exist an infinite number of non-negative (electromagnet forces are always attractive) choices of f1 and
f2 to realize a given desired total force Fdes. Thus, the AMB designer must supply a constraint equation
between f1 and f2 to uniquely determine f1 and f2 for a given total force, Fdes. Typically, these force con-
straints are indirectly imposed through a constraint applied to the electromagnet voltage, current, or flux.10

To illustrate the limitations of the standard biasing scheme for use with low-loss AMBs, the constant-flux-
sum (CFS) constraint is first discussed. Next the generalized complementary flux constraint (GCFC) and the
voltage switching law that implements it are introduced. Section III-D discusses the effect of the bias level
on AMB performance measures such as, static load capacity, force slew-rate, closed-loop bearing stiffness
and damping.

A. The Constant-Flux-Sum (CFS) Constraint

This constraint introduces a constant flux bias Φ0 into the electromagnets so that Φ1 = Φ0 + φ1 and
Φ2 = Φ0 + φ2. Since the electromagnet force depends on the square of the flux, the sign of the flux
is immaterial. However, the fluxes are implemented so that Φ1 and Φ2 are always non-negative. The CFS
constraint is imposed so that the sum of the total fluxes at all times is constant: Φ1+Φ2 = 2Φ0. This implies
that φ1 = −φ2. Conveniently, the two control fluxes φ1 and φ2 reduce to one by defining φ = φ1 = −φ2.
The control flux φ produces a net force in a differential manner:

Φ1 = Φ0 + φ (8a)

Φ2 = Φ0 − φ, (8b)

with the corollary constraint |φ| ≤ Φ0 so that Φj is non-negative for j = 1, 2.
The main advantage of the CFS is that it exactly linearizes the AMB translational dynamics permitting

implementation of simple linear control algorithms in terms of φ as the control input. Imposing (8) on the
translational equation of motion (3), one obtains

mẍ = F =
1

µ0Ag
[Φ2

1 − Φ2
2]

=
1

µ0Ag

[

(Φ0 + φ)2 − (Φ0 − φ)2
]

=
4Φ0

µ0Ag
φ, |φ| < Φ0. (9)

Since low-loss operation is desirable, Φ0 should be reduced ideally to zero. However, as Φ0 tends towards zero
in equation (9), the total electromagnet force becomes zero resulting in an uncontrollable system. In addition,
reduction of Φ0 to a small but non-zero value is detrimental to the AMB performance because the control
flux is saturated |φ| < Φ0. Thus, the main advantage of the CFS technique, namely the exact linearization
property, is nullified by the absence of linear controllability under low-loss conditions. Consequently, the
CFS constraint is a poor design choice for low-loss AMB operation.

B. Complementary Flux Constraints

The generalized complementary flux condition (GCFC) also introduces a flux bias (Φj = Φ0 + φj, j = 1, 2),
however, the control fluxes are constrained such that φ1φ2 = 0. Thus, at any given time, one of the control
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fluxes is zero while the other is adding to the bias flux to create a net force. For convenience, introduce the
generalized control flux

φ := φ1 − φ2. (10)

The GCFC constraint written in terms of φ is

φ1 = φ, φ2 = 0 when φ ≥ 0

φ1 = 0, φ2 = −φ when φ < 0,
(11)

and is imposed by following voltage-switching rule11

Vc1 = v, Vc2 = 0 when φ ≥ 0

Vc1 = 0, Vc2 = −v when φ < 0,
(12)

where Vcj are the voltage reference inputs to the voltage-mode amplifiers and v is the generalized control
voltage such that the electrical dynamics of equation (5) reduce to

φ̇ =
v

N
. (13)

For simplicity, the resistance has been neglected. Alternatively, one may redefine the control input by letting
v = Vapp − iR to cancel the resistance.

Imposing this flux constraint on the translational dynamics, (3) one obtains

mẍ = F =
1

µ0Ag
(Φ2

1 − Φ2
2)

=
1

µ0Ag
[φ21 − φ22 + 2Φ0(φ1 − φ2)]

=
1

µ0Ag
(2Φ0φ+ φ|φ|). (14)

Due to the presence of the φ|φ| term in equation (14), the AMB retains its controllability properties as Φ0

reduces to zero. In this case, the control fluxes are equal to the total fluxes φj = Φj for j = 1, 2, and the
generalized control flux is φ = Φ1 − Φ2. Consequently, the GCFC implements the standard CFC (see Ref.
[11]) as a special case when the bias flux is zero.

C. GCFC Implementation

The GCFC implementation requires three components: (1) the ability to estimate the electromagnet flux,
including its DC component, (2) the ability to synthesize a constant bias flux in the presence of a changing
airgap, and (3) the implementation of the state-dependent, voltage-switching rule of equation (12). The
lookup table, illustrated in Figure 2, satisfies requirement (1). Since the flux is a function of the electromagnet
current and airgap, requirement (2) suggests that feedback, which modulates the current, is required to realize
a constant bias flux in the presence of a changing airgap. The voltage switching rule of equation (12) is used
to distribute the generalized control voltage v to the appropriate electromagnet depending on the sign of the
generalized control flux φ. Thus, significant filtering of the position and current measurements is required to
obtain clean flux measurements to avoid spurious switchings. A detailed presentation of the issues involved
in the construction of the flux-lookup table and the implementation the GCFC is given in Refs. [12, 13].

Figure 3 shows the GCFC and control law implementation block diagram for the x control axis of the
PREMAG reaction wheel. The electromagnet coils are driven by Copley Controls model 412 PWM voltage-
mode servo-amplifiers. The amplifiers force the electromagnet terminal voltage Vapp,j to follow the reference
voltage Vr,j for j = 1, 2. The transfer function of Vapp/Vr is a low-pass filter with a 200Hz bandwidth. Since
the electromagnet coils are linear in the voltage input, one may use superposition to independently realize a
bias flux and control flux. In light of this, each reference voltage Vr,j is decomposed into a component that
implements the flux bias Vb,j and a component that implements the control law Vc,j:

Vr,j = Vb,j + Vc,j, j = 1, 2 (15)
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only by the saturation flux density. Thus, the GCFC static load capacity is FGCFC = Fmax. On the other
hand, the largest force that the CFS constrained AMB can produce is FCFS = (2Φ0)

2/µ0Ag. Consequently,
if Φ0 < Φsat/2, then FCFS < Fmax. In this case, the CFS scheme artificially limits the static load capacity
of the AMB to less than the capacity of the electromagnets.

The force slew-rate measures the rate-of-change of the force with time. The time derivative of the force
using equation (13) is

Ḟ (φ) =
dF

dφ
φ̇ =

dF

dφ

v

N
≤ dF

dφ

Vsat
N

(16)

where the control voltage is assumed to be less than the amplifier supply voltage: v ≤ Vsat. This measure is
related to the amplifier bandwidth.

Closed-loop bearing stiffness and damping measure the rate-of-change of the force with respect to the
rotor position and velocity, respectively. These concepts are illuminated by assuming that the control flux
is designed with position and velocity feedback: φ = φ(x, ẋ). Using the Taylor series expansion on the net
force in the resulting closed-loop equation of motion, mẍ = F (φ(x, ẋ)), gives

mẍ ≈ dF

dx
x̃+

dF

dẋ
˙̃x

=
dF

dφ

dφ

dx
x̃+

dF

dφ

dφ

dẋ
˙̃x

= K(φ)x̃+D(φ) ˙̃x (17)

where the tilde is used to represent the deviation from the expansion point. One identifies the possibly
nonlinear stiffness K(φ) and damping D(φ) terms from equation (17).

It is clear from equation (16) and (17) that the force slew-rate, the bearing stiffness, and damping each
depend on the slope of the force-flux characteristic, dF

dφ
. Equations (9) and (14) show that d

dφ
FCFS =

4Φ0/(µ0Ag) and
d
dφ
FGCFC = 2(Φ0+ |φ|)/(µ0Ag) are linearly proportional to the bias flux. Thus, in both the

CFS and GCFC schemes, a large bias flux enhances the bearing stiffness and force slew-rate. In addition, as
the bias approaches zero, the bearing stiffness and force slew-rate decrease in both CFS and GCFC schemes,
however, the CFS becomes uncontrollable while the GCFC maintains nonlinear controllability.

Heuristically, one expects a bearing with a large force slew-rate and bearing stiffness to be more “re-
sponsive” and have better disturbance rejection capabilities. The low-loss AMB has opposing performance
measures: a LB design is desirable for efficient FWB energy storage and AMB operation, however, at the
expense of decreased bearing stiffness, damping, and force slew-rate. Depending on the requirements of the
application, this trade-off may or may not be debilitating. For example, terrestrial or ground vehicle energy
storage applications may need to float the FWB rotor in the presence of large external disturbances and
thus require large bearing stiffness. In a satellite attitude control application on the other hand, the rotor
imbalance of the ESCMG itself may be a major source of attitude pointing error. In this case, it may be
beneficial to have a low bearing stiffness to reduce the transmission of the rotor imbalance to the spacecraft
and its sensing instruments. Thus, understanding of the effect of the bias level on the energy storage effi-
ciency and the controller performance (with respect to the application requirements) is an important issue
when using the GCFC.

IV. Control Design for the 1-DOF AMB

Assuming a constant bias is realized, the GCFC constrains the operation of the electromagnets so that
the dynamics of the generalized control flux φ̇ (equation (13)) captures the dynamics of both electromagnets
Φ̇1 and Φ̇2 (equation (5)). Thus the GCFC-constrained AMB, originally represented by the fourth order
dynamic system (3)-(5), reduces to the third order dynamic system (14)-(13).

In order to work with a system having the minimum number of parameters, it is convenient to introduce
the following non-dimensionalized state and control variables along with a non-dimensionalized time

x1 :=
x

g0
, x2 :=

ẋ

Φsat

√

g0/κ
, x3 :=

φ

Φsat
,

u :=
v
√
g0κ

NΦ2
sat

, τ := t
Φsat√
g0κ

(18)
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where κ := mµ0Ag and Φsat is the value of the saturation flux: See discussion in Section III-D.
In terms of these non-dimensionalized variables, the gcfc constrained dynamics (14)-(13) can be written

in state-space form as follows

x′1 = x2 (19a)

x′2 = εx3 + x3|x3| := f2(x3) (19b)

x′3 = u (19c)

where ε := 2Φ0/Φsat and where prime denotes differentiation with respect to τ . Low-bias operation in this
context therefore implies that ε ¿ 1, while zero bias implies that ε = 0. The control law is computed for
this system and re-dimensionalized before being applied to system (3)-(5). Note that the state equation (19)
may be written in the standard control affine form ẋ = f(x) + g(x)u with

f(x) =







x2
f2(x3)

0






, g =







0

0

1






. (20)

Remark 3. (Control Objectives)
The control objective can be stated as follows: find a control law u : D ⊆ R

3 → R such that

(i) the closed-loop system has an isolated equilibrium at the origin

(ii) the origin is asymptotically stable for all x(0) ∈ D

(iii) The domain of definition D ⊆ R
3 of the control law u(x) is as large as possible

A. Control Design via Backstepping

A common technique for the stabilization of cascaded systems is backstepping. In this approach, one views
the state-variable x3 as the control input to the mechanical dynamics (19a)-(19b) through f2(x3). For
convenience, let the state of the mechanical dynamics be z = [x1, x2]

T . One then assigns the dynamics for
x3 via the integrator (19c). To this end, first note that if one chooses x3 such that

f2(x3) = σ(z) := −k1z1 − k2z2 (21)

the z-subsystem is feedback linearized. In this case, the z-subsystem is given by ż = Az where

A :=

[

0 1

−k1 −k2

]

(22)

For k1 > 0 and k2 > 0 the matrix A is Hurwitz. Now introduce the function u0 : R
2 → R such that

f2(u0(z)) = σ(z) for all z ∈ R
2. It can be easily verified that

u0(z) := −
1

2
sgn(σ(z))(ε−

√

ε2 + 4|σ(z)|). (23)

For ε = 0 this function reduces to
u0(z) = sgn(σ)|σ| 12 . (24)

If one now tries to implement the virtual control law u0(z) via (19c) one immediately faces the problem of
the non-Lipschitz continuity of the inverse of the function f2(x3) at the origin when ε = 0. If, for instance,
as usual one defines the error variable η = f2(x3)− σ(z) one ends up with the backstepping control law

u(z, y) =
( ∂f2
∂x3

)

−1[∂σ

∂z
(Az + bη)− 2bTPz − γη

]

, γ > 0 (25)

where P > 0 satisfies the matrix inequality (such a P always exists since A is Hurwitz) ATP + PA < 0.
With A as in equation (22), the closed-form solution of ATP + PA = −I2×2 for P is

P =
1

2

[

k2

1
+k1+k

2

2

k1k2

k1

k1
1+k1

k1k2

]

. (26)
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Using the Lyapunov function

V (z, y) = zTPz +
1

2
η2, (27)

it can be easily shown that the control law (25) globally asymptotically stabilizes the system (19) for non-zero
ε. However, the control law (25) is singular at x3 = 0 for ε = 0. Indeed, since

(

∂f2
∂x3

)

−1

=
1

2|x3|+ ε
, (28)

the control law (25) is not defined at x3 = 0 for the case of zero-bias flux. The singularity space (i.e. the
set where u is undefined) is a plane in R

3. An infinite voltage command is issued whenever the system
trajectory crosses the plane of singularity. Thus, in ZB operation, control law (25) renders the origin of (19)
asymptotically stable for all initial conditions x0 ∈ D1 = {x ∈ R

3| x3 6= 0}.
It should come as no surprise that the singularity is still present even if one introduces an alternative

definition for the error. For example, let η = x3 − u0(z) the z-subsystem can be written as

ż = Az + b(z, x3)η (29)

where b(z, x3) = [0, π(z, y)]T , and where π(z, x3) ∈ C0 satisfies f2(x3) = f2(u0(z))+π(z, x3)η. For example,
one may choosee

π(z, x3) :=
f2(x3)− f2(u0(z))

x3 − u0(z)
. (30)

Using the same Lyapunov function candidate as in (27) it can be shown that the choice of the control law

u(z, x3) =
1

√

ε2 + 4|σ(z)|

(

∂σ

∂z

)

(

Az + b(z, x3)η
)

− 2bT (z, x3)Pz − γη, γ > 0

(31)

results in a globally asymptotically closed-loop system for all ε 6= 0. The control law (31) is bounded for all
ε > 0. For ε = 0 this control law exhibits a singularity when σ(z) = 0, and hence, renders the origin of (19)
asymptotically stable for all x0 ∈ D2 = {x ∈ R

3| σ(z) 6= 0} in zero-bias operation.

B. Control Design via Control Lyapunov Functions (CLF)

Control Lyapunov function (CLF) design is useful for systems with cascaded structures and is closely related
to backstepping.

Definition 1. A function V : R
n → R+ is a control Lyapunov function (CLF) for the system ẋ = f(x)+g(x)u

if it satisfies the following properties:

(i) V is positive definite

(ii) V ∈ C1

(iii) V is radially unbounded, and

(iv) LfV (x) < 0 for all x 6= 0 such that LgV (x) = 0

where the lie derivative is LfV (x) :=< ∇xV (x), f(x) > for vector field f and scalar function V .

The system ẋ = f(x)+g(x)u is stable when V̇ (x) = LfV (x)+LgV (x)u < 0 for all non-zero x. To satisfy

this inequality, one chooses u to dominate ÃLfV (x) so that V̇ < 0. CLF property (iv) guarantees that this
inequality holds even when one looses controllability at LgV (x) = 0.

To relate the CLF concept to cascaded systems and the backstepping discussion in the previous section,
suppose that u0(z) stabilizes the mechanical z-subsystem dynamics with Lyapunov function V0(z) ∈ C1.
Then, by definition,

V̇0(z) = L[z2,f2(u0(σ(z)))]T V0(z) < 0, ∀x 6= 0.

eNotice that π(z, x3) ∈ C0 for all ε ≥ 0 since f2 ∈ C1.
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The function V (z, η) = V0(z) +
1
2η

2 with η = x3 − u0(z) satisfies property (iv) of the CLF definition. Using

the cascaded structure of the f and g in equation (20), V̇ (x) = LfV (x) + LgV (x)u may be rewritten

V̇ (z, η) = LfV (z, η) + LgV (z, η)u

=< [
∂V

∂z1
,
∂V

∂z2
,
∂V

∂η
, ], [z2, f2(x3), 0]

T > + < [
∂V

∂z1
,
∂V

∂z2
,
∂V

∂η
, ], [0, 0, 1]T > u

= L[z2,f2(x3)]V0(z) + ηu

= L[z2,f2(u0(σ(z)))]V0(z) < 0, for η = 0.

Thus, the Lyapunov function (27) used in the backstepping design is practically a CLF for (19), however, it
fails the CLF smoothness property (ii): That is, V (z, η) = V0 +

1
2η

2 is not in C1 because 1
2η

2 is not smooth
enough. Indeed, given η = x3 − u0(σ(z)), then

η̇ = u− ∂u0
∂σ

∂σ

∂z
ż.

Since
∂u0
∂σ

=
1

√

ε2 + 4|σ(z)|
,

η̇ is fails to be continuous at σ(z) = 0 in zero bias (ε = 0).
Using the results from Ref. [24], one may introduce a new backstepping error function which is smooth

enough to make V be a CLF. To this end, define the continuous function ψ(z, x3) ∈ C0 so that it behaves
like the backstepping error function: That is, ψ(z, x3) = 0 implies that x3 = u0(z). Now construct the
differentiable function Ψ(z, x3) ∈ C1

Ψ(z, x3) :=

∫ x3

0

ψ(z, q)dq (32)

where for all z ∈ R
2, Ψ(z, x3)→∞ as |x3| → ∞. The form of the CLF is then given by

V (z, x3) = V0(z) + Ψ(z, x3)−Ψ(z, u0(σ(z))). (33)

Given the CLF in equation (33), one can derive a globally asymptotically stabilizing control law for
equation (19).

Proposition 1. (CLF control from Refs. [11,13] )
Given the state equation (19), select the virtual control function u0(z) as in (23) to stabilize the mechanical
z-subsystem dynamics with V0(z) = zTPz and P as in equation (26). Next, let

ψ(z, x3) = ε(x3 − u0(z)) + x3|x3| − u0(z)|u0(z)|.

Then,

V (z, x3) =
ε

2
(x3 − u0)2 +

1

3
|x3|x23 − x3u0(z)|u0(z)|+

2

3
|u0(z)|u0(z)2 + V0(z)

is a CLF for (19) and control law

u(z, x3) =ψ(z, x3)
−1
[

(x3 − u0(z))(k1x2 + k2f2(x3)) +
∂V0
∂x2

(

f2(u0(z)− f2(x3))
)]

− γ(x3 − u0(z)), γ > 0 (34)

will globally asymptotically stabilize (19) for ε 6= 0. For ε = 0, (34) renders the origin of (19) asymptotically
stable for all x0 ∈ D3 = {x ∈ R

3| x3 6= 0 & σ(z) 6= 0}.

One may verify that the CLF control law (34) is singular in ZB when x3 = 0 and u0(z) = 0.
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C. Control Design via Passivity

The control design via passivity again uses integrator backstepping to take advantage of the cascaded struc-
ture of the system. However, it uses a very simple virtual control law

u0(z) = −k1z1 − k2z2 (35)

with k1 > 0, k2 > 0, to globally asymptotically stabilize the z-subsystem dynamics. In contrast to the
backstepping and CLF control laws, this virtual control law does not linearize the mechanical z-subsystem
dynamics and the resulting closed-loop system is nonlinear. Consequently, the stability proof for the me-
chanical z-subsystem dynamics is more difficult. The proof takes advantage of the Mean-Value Theorem and
ideas from dissipativity theory: See Refs. [11, 13] for a detailed discussion.

The main advantage of this passivity-based virtual control law is that it does not implement the inverse
of the function f2(x3). The singularity in each of the backstepping and CLF designs can be traced to the
non-Lipschitz continuity of f−12 (x3). Consequently, the passivity-based virtual control law leads to a globally
defined control law for (19), even in zero bias operation. The following proposition is taken directly from
Refs. [11, 13].

Proposition 2. (GAS via passivity and backstepping [11,13])
The system (19) with the control law

u = −k1z2 − k2f2(x3)− z2π(z, x3)− γη (36)

where k1, k2, γ are positive constants, η = x3 − u0(z), u0(z) as in (35), and the continuous function π(z, x3)
as in (30), is globally asymptotically stable (GAS).

Since the function π(z, x3) is continuous, the passivity-based control law (36) is defined for all x ∈ D4 =
R
3. That is, passivity-based control law is completely nonsingular, even in ZB operation (ε = 0).

D. Control Law Singularities
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Figure 5. Velocity estimation for a step-like and cosine-
like position input.

Control objective (iii) listed Remark 3 states that
the domain of definition of u : D ⊆ R

3 → R should
be as large as possible. Each of the control laws
presented in Section IV are nonsingular for ε 6= 0.
However, the backstepping and CLF control laws are
singular in ZB operation. Specifically, the singular-
ity space (i.e. the complement of the domain of defi-
nition) of the backstepping control laws of equations
(25) and (31) are D1 = {x ∈ R

3|ε = 0 & x3 = 0}
and D2 = {x ∈ R

3|ε = 0 & k1z1 + k2z2 = 0}, re-
spectively. These planes represent subspaces in R

3,
and hence, always have an intersection. In addition,
the singularity space of (34) is D3 = {x ∈ R

3|ε =
0 & x3 6= 0 & σ(z) 6= 0}. Since D3 = D1 ∩ D2,
the CLF control law is a line in R

3. Finally, the
passivity based control law (36) is defined for all of
R
3.
An infinite control voltage is requested whenever

the state trajectory intersects the singularity space.
Furthermore, one should expect the control voltage
to become arbitrarily large as the state trajectory gets arbitrarily close to the singularity. Thus, unreasonably
large control voltages may be generated from the backstepping and CLF control laws with very small but
non-zero bias flux. Heuristically, one would additionally expect the large control “spikes” to occur more
often from the backstepping controllers as compared to the CLF control law because it is “easier” for the
state trajectory to encounter a planar singularity than a linear singularity in R

3. Since the passivity-based
control law is non-singular in zero-bias, it will always produce a bounded control input voltage.
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E. Velocity Estimation

Since each control law assumes velocity feedback and only position and currents are measured, the velocity
must be estimated. One could construct a nonlinear observer for the system, however a simpler approach is
taken in this work. Since the closed-loop bandwidth of the AMB was expected to be on the order of 100 Hz,
a gain-limited differentiation filter is implemented

V (s)

x(s)
=

(1 + b)2s

(s+ b)2

where b = 2π200. This filter approximates a derivative up to about 200 Hz and then rolls off the high-
frequency gain at −20 dB/dec. The filter does introduce some extra phase shift within the AMB closed-
loop bandwidth, but does not affect the control performance significantly. Figure 5 illustrates the velocity
estimation for a step-like and cosine-like position input.

V. Experimental Validation

The control laws of Section IV were used to magnetically levitate the reaction wheel shown in Figure 1.
The experiment is implemented using a dSPACEr DS1103 controller board sampling at 6.6 kHz and the
accompanying MathWorksr and dSPACEr software: Matlabr, Simulinkr, Real-Time Workshopr, and
ControlDeskr. Each control law employs the GCFC using the block diagram in Figure 3: See Refs. [12,13]
for additional implementation details. The experimental data serves to verify two aspects of the control
designs. The control law singularity analysis is verified in the following section and the behavior of the AMB
with respect to the performance measures as a function of the bias flux is illustrated in Section V-B.

A. Experimental Validation of Control Law Singularity Analysis
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Figure 6. Backstepping control law (equation (31)):
k1 = 2, k2 = 2, γ = 0.5. Regulation to x = 0 against
disturbances for large bias Φ0 = 100µWb (left column)
and small bias Φ0 = 10µWb (right column).

Each control law from Section IV is found to sta-
bilize the rotor with bounded control inputs when
employing a large bias. However, when operating
in zero-bias, the singular backstepping control law
(equation (25) or (31)) may request an infinite con-
trol voltage. Moreover, when operating with a very
small, but non-zero bias, the backstepping control
laws often generate bounded, but unreasonably large
control voltages. Although the CLF control law
is nonsingular in ZB, it is found in practice that
it rarely generates voltages of unreasonable magni-
tude.

Figure 6 shows the rotor position x, the gen-
eralized control flux φ, and the generalized control
voltage v for the backstepping control law (equa-
tion (31)). The left column shows large-bias opera-
tion Φ0 = 100µWb whereas the right column shows
very low-bias operation Φ0 = 10µWb. Under large-
bias operation, the control law regulates the rotor to
x = 0. At about 1.25 s, a large external disturbance
is manually applied to the rotor (by physically push-
ing on the rotor). The AMB quickly recovers and
resumes regulation to x = 0 when the rotor is released at about 2 s. Since the backstepping control law
is nonsingular in large bias operation, the generalized control voltage v is bounded (less than about 10 V)
during operation as expected.

AMB behavior typical of very low-bias backstepping control is shown in the right column of Figure 6.
When operating with very low bias, the rotor regulation to x = 0 is unacceptable. At t = 0, a “impulse”
disturbance is manually applied to the rotor (by tapping on the rotor). Intense vibration of the rotor ensues
until about 1.25 s, followed by a brief period where the control law resumes regulation to x = 0. However, at
about 4 s, another intense vibration occurs (even with no applied external disturbance); the rotor even bumps
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into the stator at x = −g0 = −20 mils. Note that the intense rotor vibration corresponds to the presence
of huge “spikes” in the generalized control voltage. Although the implemented control law is nonsingular
(Φ0 6= 0), the requested control voltage is unreasonably large (often thousands of volts in magnitude). The
voltage “spikes” arise from the state trajectory intersecting the plane of singularity D2.
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Figure 7. Column-wise comparison of the spectral con-
tent of the generalized control voltage v in ZB oper-
ation: (left) backstepping control equation (31) with
k1 = 4, k2 = 2, and γ = 0.5; (middle) CLF control equa-
tion (34) with k1 = 1, k2 = 0.5, and γ = 0.5; (right)
passivity control equation (36) with k1 = 6, k2 = 2, and
γ = 0.5.

Recall that the Copley voltage-mode amplifiers
try to make the coil voltage Vapp follow Vr. These
amplifiers have limited bandwidth and are powered
from a 28 V power supply (typical of a spacecraft
bus): Vsat = 28 V. In light of this, one may expect
that the huge “spikes” in the requested control volt-
age in Vr will saturate and have little impact on the
controller performance. This is clearly not the case,
as shown in Figure 6.

The singularity behavior of the control laws may
be further characterized by inspecting the frequency
content of the generalized control voltage v. Figure
7 illustrates the zero-bias operation of the backstep-
ping controller (25), the CLF controller (34), and
the passivity-based controller (36) regulating the ro-
tor to the origin in the presence of periodic distur-
bance (from the spinning rotor); control gains are
given in the figure caption. The rms error is used
as a measure of the control law regulation perfor-
mance. One may consistently select control gains
k1, k2, and γ so that the ZB passivity and CLF con-
trol laws achieve rotor regulation performance with erms < 1− 2 mils. Note however that the backstepping
control law (equation (25)) has trouble regulating the rotor to less than erms = 4 mils, even for larger k1
and γ gains.

The middle row of Figure 7 shows the generalized control voltage for each control law. The ZB backstep-
ping controller frequently generates voltage “spikes” that are thousands of volts in magnitude. The CLF
control law is technically singular in ZB, however, it rarely generates large voltage “spikes” in practice. For
instance, at 0.075 s, a voltage “spike” is generated, but it is only a modest 20 V. The relatively low rate-of-
occurrence of voltage “spikes” in the CLF as compared to the backstepping control law is attributed to the
fact that the singularity space of the CLF control law (a line in R

3) is much smaller than the backstepping
singularity space (a plane in R

3). Thus, it is less likely that the state trajectory will intersect or come “close”
to the CLF singularity space. Note that the passivity control law is well-behaved in ZB and has control
voltage less than 10 V.

The last row of Figure 7 shows the frequency content of each control signal. The frequency content of
the backstepping control law is much larger than that of the CLF control, while the frequency content of the
passivity-based control has the smallest bandwidth. Superimposed over the spectral voltage content is the
measured voltage-mode amplifier transfer function

Vapp

Vr
(s). Observe that the voltage-mode amplifier filters

out a significant portion of the backstepping controller energy while the CLF and passivity-based control
is applied to the electromagnet coils essentially unchanged. One concludes that control laws with a large
singularity spaces demand voltage-mode amplifiers with an unreasonably large bandwidth to implement.

B. Experimental Validation of the Role of the AMB Bias Flux

As previously discussed in Section III-D, when using the GCFC it is important to understand the effect
of the bias flux on the energy storage efficiency (electrical and electromechanical losses) and the controller
performance (bearing stiffness, damping, etc.). Heuristically, one expects a bearing with large bias, and
hence large bearing stiffness and damping, to be more “responsive” are possess good disturbance rejection
capability. However, this is achieved at the cost of increased power consumption and power losses.

The influence of the bias flux on the AMB performance measures has been experimentally verified13

for the for each control law in Section IV, however, only the observations on the passivity-based control
law equation (36) are presented. The bias level has a similar effect on the performance measures of the
AMB under CLF and backstepping control. However, when operating in zero bias, the performance of the
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backstepping controller is significantly degraded to the point that it is difficult to draw fair comparisons with
the CLF and passivity ZB control laws.
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Figure 8. Step response of the rotor using the passivity-
based control law in equation (36) with gains k1 = 3,
k2 = 0.5 and γ = 0.5. Position x, control flux φ, and
control voltage v are shown for Φ0 = 0 µWb (left column)
and for Φ0 = 150 µWb (right column).

Figure 8 shows the step response of the rotor us-
ing the passivity-based control law in equation (36)
with gains k1 = 3, k2 = 0.5 and γ = 0.5. Position x,
control flux φ, and control voltage v are shown for
Φ0 = 0 µWb (left column) and for Φ0 = 150 µWb
(right column). ZB operation results in a step re-
sponse with ringing; a response typical of a bearing
with little bearing stiffness and damping. On the
other hand, the large bias results in fast response
with no ringing; a response typical of a bearing with
significant bearing stiffness and damping. Thus,
when holding the control gains constant, the bias
directly effects the bearing stiffness and damping as
expected.

The rms power consumption and total square
flux required for AMB rotor regulation are use-
ful electrical performance measures. The power
consumption of the AMB per control axis is com-
puted from the measured coil voltage and current:
Psupp,rms = (Vapp,1i1)rms + (Vapp,2i2)rms. Since the
AMB and FWB instantaneous power losses are pro-
portional to Φ2, the rms value of the squared flux is used as a measure of the losses over time. That is, the
AMB and FWB losses over time are gauged by the rms values of the total square flux (Φ2

1)rms + (Φ2
2)rms.

Recall that the rms value of a signal is given by xrms(t) =
√

1
t

∫ t

0
x(τ)dτ , and generally, (Φ2)rms 6= (Φrms)

2.
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Figure 9. Steady-state rotor regulation against a pe-
riodic disturbance: Illustrated are the rms regulation
error, the rms control flux, and the rms value of the
total fluxes.

Given any two control laws, or even the same
control law with different bias levels, it is difficult to
“match” their transient responses, and therefore dif-
ficult to draw a “fair” comparison of the control laws
based on power consumption or total square flux
usage. Although the qualitative observations made
about the bearing stiffness and damping are appeal-
ing to the control engineer when looking at the fa-
miliar step response (such as those drawn about Fig-
ure 8), it is easier to obtain “fair” comparisons when
operating the AMB under some steady-state behav-
ior. A persistent periodic disturbance, similar to
rotor imbalance, is applied to the rotor. As a result,
the control law regulates the rotor to a desired posi-
tion xdes with a roughly sinusoidal regulation error
e(t) = xdes− x(t). Two realizations of a control law
are considered comparable if they can regulate the
rotor to the desired set point with the same regula-
tion performance, measured by the rms value of the
regulation error, erms. Given two control law realizations with the same erms value, one may use the rms
value of the control flux φrms to compare the amount of control effort. Furthermore, the rms value of the
total flux squared maybe be related to the losses in the AMB and FWB. Figure 9 shows the calculation of
such performance measures.

As discussed in Section IV-D, the bias should affect the bearing stiffness. From equation (17) and the
passivity based virtual control law u0 in equation (35), the nonlinear stiffness term is

K(φ) =
∂F

∂φ

∂φ

∂x1
=

2

µ0Ag
(Φ0 + |φ|)k1,

where k1 behaves like a proportional gain. Thus, for a constant proportional gain k1, the bearing stiff-
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ness should increase as Φ0 increases, and the control effort should be less to obtain the same regulation
performance. These ideas are illustrated in Figure 10.
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Figure 10. Bearing stiffness as a function of the bias flux using the passivity-based control law: (a) rms
regulation error erms vs. “proportional” gain k1. (b) rms control flux φrms vs. rms regulation error erms.

Figure 10a shows a parameter study of the passivity control law’s regulation performance: the rms
regulation error erms is plotted as a function of the proportional gain k1 for several values of the bias flux;
Φ0 = 0, 50, 100, and 150µWb. For a given value of Φ0, one obtains tighter regulation by increasing the
proportional gain. Now, to obtain a given desired regulation performance erms, one requires a smaller value
of the proportional gain k1 as the bias increases. This implies that the bearing stiffness increases as the bias
increases, as predicted.

Figure 10b shows the rms value of the control flux φrms as a measure of the control effort. The control
effort φrms is plotted vs. the regulation performance measure erms for several values of the bias. For a given
value of Φ0, one requires greater control effort to obtain tighter regulation tolerances. Now, to obtain a
desired regulation performance erms, the required φrms decreases as the bias increases. In other words, less
control effort is needed with increasing bias. This again suggests that the bearing stiffness increases with
increasing bias flux.

Figure 11 illustrates the electrical performance measures. Figure 11a shows the total square rms flux and
is a measure of the losses in the AMB and FWB. For a given Φ0, more rms control flux φrms and consequently,
more total square flux (Φ2

1)rms + (Φ2
2)rms is required to obtain tighter regulation tolerances. Since the AMB

and FWB rms power losses are proportional to (Φ2
1)rms + (Φ2

2)rms, one incurs more power losses to regulate
to tight error tolerances. To regulate the rotor with a given desired regulation performance erms, the total
square flux increases with increasing Φ0. That is, the AMB and FWB losses increase with increasing Φ0 as
expected.

Figure 11b shows the rms power consumption Psupp,rms = (Vapp,1i1)rms + (Vapp,2i2)rms for the AMB vs.
erms. For a given Φ0, more rms power is required to regulate the rotor to a tighter error tolerance. This
agrees with intuition since the additional control effort costs additional power to implement. Notice however
that for a given error tolerance erms, one does not necessarily increase the power consumption when one
increases the bias flux. For instance, for erms = 1.3 mils, it takes the least power to operate in ZB. However,
for erms = 1.3 mils, it takes less power to operate the AMB with Φ0 = 100µWb than it does to operate with
Φ0 = 50µWb. Furthermore, one sees that for erms < 1.1 mils, it is more efficient to operate the AMB with
Φ0 = 100µWb than in ZB.

This behavior of the electrical performance measures can be understood by considering the effect of the
bias flux on the bearing stiffness. As shown in Figure 10, for a given regulation error erms, an increase in the
bias flux results in a bearing stiffness increase and a decrease in the required control flux. In this situation,
more power is required to implement the larger bearing stiffness Φ0, however, less power is required to realize
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Figure 11. Electrical performance measures vs. regulation performance measure erms for various Φ0: (a) total
square rms flux (Φ2

1)rms + (Φ2
2)rms vs. erms (b) rms power consumption Psupp,rms = (Vapp,1i1)rms + (Vapp,2i2)rms vs.

erms

the control flux φ.
The experimental data suggests that the rms power consumption behaves according to the sketch in

Figure 12. Figure 12a illustrates that for a given rms regulation performance erms, the power required to
implement the control flux, denoted Pφ, decreases with increasing Φ0. This reflects the change in the bearing
stiffness with bias flux. Furthermore, for a given Φ0, the rms control flux power increases when regulating
to a tighter error tolerance. In addition, more power is required to implement the bias flux, denoted Pb, as
the bias increases. The total rms power supplied is Psupp,rms = Pb,rms + Pφ,rms and is sketched in Figure
12b. This suggests that for a given regulation performance erms, there exists an optimal bias Φ∗

0(erms) that
will minimize the AMB rms power consumption.
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Figure 12. (a) Postulated dependence of the rms power components Pb and Pφ on the bias Φ0. (b) Postulated
dependence of the rms power supplied Psupp on Φ0.
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VI. Conclusion and Future Work

Control design for the AMB is a two step process: first, a constraint must be designed (which typically
implements a bias flux) so that the generation of the net electromagnet force is well-defined. Next, a stabi-
lizing control law is constructed. Since the power loss mechanisms for the FWB and AMB are proportional
to the bias flux employed in step 1, it is imperative to reduce the bias flux to realize an FWB with efficient
energy storage. Since the standard CFS constraint is a poor choice for low-loss AMB design, the GCFC is
used. With the GCFC, one may operate the AMB with a large bias (to obtain some desired bearing stiffness
and force slew-rate) or with a small bias (to achieve efficient AMB and FWB operation). In fact, using the
GCFC, one may operate with zero bias-flux and still maintain controllability.

The challenges posed to the control design by the low bearing stiffness in ZB and LB must also be ad-
dressed. Specifically, when using voltage-mode amplifiers in ZB operation, one must preclude the existence
singularities in the control law which induce infinite voltage commands whenever the state trajectory inter-
sects the singularity space. It was experimentally shown that the backstepping control law of equation (31),
which is singular on a plane in R

3 in ZB operation (D2), produces unreasonably large control voltage “spikes”
that often lead to instability. On the other hand, the CLF control law’s singularity space is much smaller
than that of the backstepping control law: D3 is a line in R

3. Consequently, the CLF control law rarely gen-
erates voltage “spikes” and has much better regulation performance in ZB. Furthermore, the passivity-based
control law is completely nonsingular on R

3 and generates finite voltage commands. Finally, the frequency
content of the control laws in ZB is used as another way to characterize the singularity behavior. It is found
that control laws with smaller singularity spaces require less bandwidth from a voltage-mode amplifier to
implement.

When using the GCFC, it is important to understand the effect of the bias value on the AMB mechanical
performance measures (bearing stiffness, damping, force slew-rate) and electrical performance measures
(energy consumption and efficiency) so that one may evaluate the meaning of each measure according to
the requirements of the AMB application. Experiments using the passivity based control law indicate that
bearing stiffness indeed increases with bias. When considering the rms power consumption Psupp,rms in terms
of its components Pb,rms and Pφ,rms, the rms power required to implement the bias flux Pb,rms increases with
increasing Φ0; on the other hand, the rms power required to implement the control flux Pφ,rms decreases
with increasing Φ0 because of the corresponding increase in bearing stiffness. As a result, there exists an
optimal value Φ∗

0(erms), which depends on the regulation performance measure erms, that minimizes the rms
power consumption Psupp,rms. Future work includes the determination of this optimal bias flux value.
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