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Abstract--For problems involving rotating rigid bodies (e.g. spin-stabilized satellites in space) one usually 
linearizes the equations of motion for the Eulerian angles to obtain tractable analytic solutions. However, 
these methods--based on a small angle assumption--fail to provide a comprehensive treatment of the 
behavior of a rigid body during large angular motions that occur, for example, during despinning. For 
such cases the nonlinear effects dictate a more sophisticated analysis. In this paper we discuss three 
different approaches for this class of problems. The first approach develops a quadratic equation based 
on a new formulation of the Eulerian angle kinematics. The second method uses a Rioeati equation, 
derived from stereographic projection of the classical direction cosine formulation for the kinematics. The 
third method, based on a reformulation of the quaternion equations along with a known result from the 
theory of Lie algebras, derives an explicit, closed-form solution for the associated system of linear, 
time-varying differential equations. Numerical simulations demonstrate the validity of all three kinematic 
formulations. 

I .  I N T R O D U C T I O N  

Rockets and spacecraft are often spun up to provide 
stability. When for some reason the spin rate 
decreases (e.g. though a spin-down maneuver), this 
stabilizing effect diminishes and, in the presence of 
transverse torques, the vehicle is subject to large 
angular displacements. In general, similar behavior is 
observed when large body-fixed torques, including 
transverse torques, are present. In such cases, attitude 
solutions based on small angle assumptions are no 
longer valid. For large angular displacements the 
nonlinearities play the predominant role, and a more 
sophisticated theory needs to be developed to handle 
such cases. In this paper three possible methods are 
presented to tackle the problem of large angles in 
rigid body attitude dynamics. 

The first method, based on the Eulerian angle 
formulation, uses a nonlinear transformation that 
enables one to reformulate the kinematics of two of the 
Eulerian angles into a convenient, complex-valued 
differential equation, which we refer to as the quadratic 
kinematic equation. The transformation is not 
restricted to small angle assumptions and yields a 
system of two nonlinear differential equations, for its 
real and imaginary parts, that gives the exact solution 
to the attitude problem. The advantage of the trans- 
formation in this setting lies in the fact that the non- 
linearities of the transformed equation are polynomial 
in nature, whereas the original equations involve tri- 
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gonometric nonlinearities. As a result, the transformed 
equation is more tractable using classical series, per- 
turbation or successive approximation techniques. 

Secondly, an old but relatively unknown method 
due to Darboux [1] is used to reformulate the attitude 
problem as the solution of a single but complex Riccati 
equation that governs the attitude of a rotating body 
in space. Although equations of this form are often 
encountered in classical differential geometry to de- 
scribe the orientation of a moving trihedral along a 
rectifiable curve (in terms of the Frenet formulas and 
direction cosines), nevertheless, its use in the rotating 
rigid body problem has been extremely limited. It is 
shown how this formulation is related to the previous 
method by a simple transformation, although the 
derivations of the two are completely independent 
of one another. A procedure for the solution of both 
formulations, based on the method of successive 
approximations, is briefly discussed. This procedure 
of solution gives very acurate results, at least for 
the class of problems where the linearized version 
of the equation gives a reasonably good first order 
approximation of the solution. 

The third method uses an approach based on 
quaternions and their counterpart, the Euler param- 
eters. It is well known that the quaternion formulation 
leads to a set of linear differential equations, but 
because of the time-varying nature of the coefficient 
matrix, analytic procedures do not fair well. A semi- 
analytic solution based on Picard's method of the 
product integral (also called the time-ordered exponen- 
tial) is presented, that allows one to find approximate 
solutions to this system of linear time-varying differ- 
ential equations. The methodology for the solution 
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works for every linear time-varying system of differ- 
ential equations, but is especially suited for problems 
of rotational kinematics, where the special structure 
of the state matrix allows the computation of its 
exponential in closed form. (This is not necessarily 
true for general time-varying state equation matrices.) 
Due to the iterative nature of the solution however, 
this approach has short term validity. The applicability 
of the Baker-CampbelI-Hausdorff formula--appear- 
ing in the theory of infinitesimal generators of one- 
parameter subgroups of Lie groups--is discussed as 
an approach to overcome this limitation and to 
extend the validity of the approximation over longer 
time intervals. 

2. PARAMETRIZATIONS OF THE 
ROTATION GROUP 

The set of matrices that relate two arbitrary refer- 
ence frames form what is commonly known as the 
(three-dimensional) rotation group. This group con- 
sists of all the matrices that are orthogonal and have 
determinant + 1. This group is also known as the 
(three-dimensional) special orthogonal group and it is 
commonly denoted by SO(3). We therefore write that 
SO(3) = {M ~ GL(3): MTM -: 1 and det(M) = + 1 }, 
where GL(3) denotes the general linear group of 
order 3, i.e. the group of all nonsingular 3 x 3 
matrices. In this section we will concentrate on 
rotation matrices that describe the orientation of the 
body-fixed reference frame described by the unit 
vectors {6} ~ {/~,/~2,/~3} with respect to the inertial 
reference frame described by the unit vectors 
{fi} _zA {~il, n2, r~3 }, i.e. for some R e SO(3) we have that 
{~} = R{b}. The matrix R therefore describes the 
relative orientation between the reference frames {6} 
and {fi} and is varying with time since it depends on 
the angular velocity vector between the two reference 
frames. Each possible orientation corresponds to 
an element of the rotation group SO(3), which we 
may view as the configuration space for all non-trivial 
rotational motions of the body. Henceforth, we will 
refer to SO(3) simply as the rotation group. In fact it is 
well known [2] that SO(3) is more than simply a 
group, but carries an inherent smooth manifold 
structure, and thus forms a (continuous) Lie group. 
We will not exploit thc Lie group structure of the 
rotation group until later on, when we discuss 
the applicability of the Baker-Campbell Hausdorff 
formula for approximating elements of a Lie group 
by the exponential map. 

There is more than one way to parametrize 
the rotation group, i.e. to specify a set of parameters 
such that an element in SO(3) is uniquely and un- 
ambiguously determined. Different parametrizations 
of the rotation group correspond to the well-known 
alternatives of solving for the relative attitude history 
between two reference frames: direction cosines. 
Euler parameters, Eulerian angles, etc. Although Hopf 
[3] showed that fivc is thc minimum number of par- 

ameters which suffice to represent the rotation group 
in a 1-1 global manner, the so-called "quaternion 
method" (to be discussed later in Section 5) of 
parametrizing the group in a 1-2 way, using four 
parameters, is sufficient for practical purposes. This 
four-dimensional parametrization is the lowest order 
singularity-free parametrization of SO(3). It is well 
known that the commonly used three-dimensional 
parametrization of the Eulerian angles leads to 
singular points for the rotation group, i.e. equations 
that exhibit singularities for certain orientations. 
Nevertheless, the use of Eulerian angles has survived 
until today, mainly because they represent physical 
quantities that are amenable to engineering insight. 
That is, the Euler angles themselves provide a useful 
output, whereas with the quaternion method it is 
necessary to transform the solution after integrating. 
In this work we are interested in solving the kinematic 
equations associated with the three-dimensional 
Eulerian angle, and the four-dimensional quaternion 
parametrizations of the rotation group SO(3). For an 
exposition on the complete parametrization of SO(3) 
one may consult [4]. 

3. TRANSFORMATION TECHNIQUES FOR 
EULERIAN ANGLES 

For many problems involving rotating rigid bodies 
(e.g. spin-stabilized satellites in space), one often 
makes the assumption that the body spin axis does 
not deviate much from its original direction. In such 
cases, and for an appropriately chosen set of three 
Euler angles, to be defined shortly, one can simplify 
the kinematic equations relating the three Eulerian 
angles with the components of the angular velocity 
vector. One thus obtains a simplified system of 
differential equations that can be used for analytic 
studies [5-7]. For example, if one wants to analyze 
the motion of a spin-stabilized body about its z-axis, 
then for a 3-1-2 Eulerian angle sequence, the angles 
fl~ and/?, describe the attitude deviation of the spin 
axis from its initial orientation (assumed to be the 
inertial Z-axis). These angles represent unwanted 
deviation of the spin axis caused by application of 
disturbances and are typically small (see Fig. 1). 
In fact the complex angle [t ~[~ + i[~, represents a 
measure of the total deviation of the spin axis and 
is often referred to as the attitude "error angle". 
According to the previous discussion, a small angle 
assumption for [3, and [;~ is quite reasonable for this 
particular problem and, thus, can be used to simplify 
the equations. 

Recall that there are 12 different sets of angles that 
can be used to describe the orientation of a rigid body. 
Not all of the choices are equivalent for analytic 
representations of solutions, and the choice of the 
particular set of angles should be decided according 
to the relevance to the problem at hand. For a 
spin-stabilized vehicle for instance, the 3-1-2 system 
is different from the 3-1-3 system of Eulerian angles 
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Fig. 1. Eulerian angle sequence 3-1-2 and attitude error 
components. 

in the sense that  the first set is composed of  two small 
and one large rotation, whereas the second set is com- 
posed of two large rotat ions and a small one (Fig. 2). 
Therefore, if one approximates  the true motion by 
linearization, as is often the case, the resulting 
equations derived are far more simple using the 
3-1-2  system than using the 3-1-3 system, for this 
part icular  problem. This does not  imply however that 
a description of  the kinematic equations by an 
alternative set of  Eulerian angles is fruitless. In fact, 
as we will show, one can use the interplay between 
different sets of Euler angles to directly derive altern- 
ative formulations for the kinematics that can be 
very helpful in the development of  analytic solutions. 

3.1. Kinematic equations in terms of Eulerian angles 

The kinematic equations for a 3-1-2  Eulerian angle 
sequence that relate the Eulerian angles and their 
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Fig. 2. Eulerian angle sequence 3 1-3. 
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rates to the components of the angular velocity vector, 
expressed in a body-fixed frame, are given by [8] 

fix = ~ox cos/~,, + co: sin fly (1 a) 

fl,. = o~y - (o~ cos fly - co.~ sin/~,.)tan ft., ( lb)  

fl= = (co: cos/~v - cox sin fl,,)sec fix- ( lc)  

Any at tempt to solve these equations directly, for 
arbitrary co x, ~Oy and o~ is futile. It is clear however 
from eqn (1) that fit is an ignorable variable. The 
decoupling of  fl: from fix and fit means that  if 
one knows the solution for the latter two, one can 
immediately compute the solution for fl= by a simple 
quadrature.  Therefore, one can merely concentrate 
on solving for the Eulerian angles fix and fit from 
eqn ( la )  and (lb).  According to the previous dis- 
cussion, a small angle approximation of fix, /3,. is 
quite reasonable if eqn (1) describe the att i tude 
evolution of a spin-stabilized (about its z-axis) rigid 
body, and therefore, together with the assumption 
that the product  flyO~ x in eqn (lc)  is small compared 
to o~ (as is usually the case for spin-stabilized bodies), 
the system of eqn (1) reduces to 

]~x = cG + fi,,co: (2a) 

/~y = co, ,-  fixto: (2b) 

~= = ~ , . .  (2c) 

The caret denotes the solution to the linear problem 
(2), in order to distinguish from the exact solution 
given by the system of eqn (1). Again, because of the 
decoupling of fi: from fix and fi,,, one can concentrate 
on solving (2a) and (2b). Using the complex notat ion 
introduced by Tsiotras and Longuski [7], one writes 
these two equations in the following single complex 
equation for the linearized transverse Eulerian angles 
fix and fi~, 

d + i°L-fi = co (3) 

where fi a~x + i/~, and ~---~0~ + i~,. Notice that (3) 
is a linear differential equation, the solution of  which 
can be written immediately in terms of quadratures.  
The error  between the linearized and original sol- 
utions fl~ ~ fl - fi will be of course relatively small, as 
long as the angles fix and fl, remain within the realm 
of the linear approximation. As mentioned earlier, this 
error  is surely small for the case of  a spin-stabilized 
body, thus justifying its terminology. It is not necess- 
arily so, however, when for some reason the stabiliz- 
ing effect of the axial spin ceases to exist (during a 
spin-down maneuver, for example), and as a result 
the body z-axis tends to depart  from its initial 
orientation, giving rise to large values for the angles 
fi, and fi,.. The problem has entered the region of  
nonlinearity, as is vividly demonstrated in Fig. 3, and 
a more comprehensive method is needed to solve for 
the true atti tude motion of the body. Figure 3 shows 
the result of  a spin-down maneuver through zero spin 
rate, in the presence of  constant transverse body-fixed 
torques, for a typical spacecraft [7]. As a first step to 
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Fig. 3. Exact and analytic solution for fix. 

alleviate this problem we look to connections between 
different sets of Eulerian angle parametrizations of 
the rotation group. By looking into different sets of 
angles one gains valuable insight into the problem. 
Moreover, as often happens, the problem solution 
depends on the particular set used to formulate the 
kinematics. We exploit these ideas below. 

where, as before, co = co x + ion,.. Eliminating 6 from 
(6) with the help of (5c), the previous equation 
reduces to 

og=[O + i(og.-( t ) tanO]exp(-i$) .  (7) 

If we now define the complex quantity 

~ tan 0 e x p ( -  iqJ) (8) 

it is not difficult to verify that ~ obeys the new 
quadratic kinematic equation 

+/co. ~ = co + Re(oS~)~ (9) 

where the bar denotes complex conjugate. In terms 
of the real and imaginary parts of a = ~.~ + iay one 
has equivalently that 

~.~ = ~o.~. + ogx + ~ o ~  + ~oy~.~ ~.,. (10a) 

ay = -o9,~ x + coy + O~y~ + co.~. , . .  (10b) 

Solution of eqn (9) for • determines the two angles 0 
and $ from (8) or equivalently from ~ = tan 0 cos q, 
and ~. = - t a n  0 sin $. The corresponding angles in 
the 3-1-2 set, i.e. ftx and fty, are given by the natural 
identification of the corresponding parametrizations 
of the rotation group. Using the parametrizations 
of the rotation group for the two sets of Eulerian 
angles, one has the following expressions for a typical 
element of SO(3): 

R ( f t .  ft.. ft,,) = 

- - sft=sftx sft,. + cft=cft~. 

- sft=cftx 

sft:sftx cft,. + cft.sp,, 

R ( ~ ,  o, O)  = 

c~0c4~ - s¢cOsq, 

- s~Oc4~ - s4~cOc~O 

s~sO 

cft=sftxsft,, + sft=cft,. - c p ,  spv- 

cft=cftx s ft., 

-cft=SftxCft,. + sft=sft, cft,cft. 

c¢s¢  + c4~cOs~O sOsq, ] 

- sql s4~ + c4~cOc~O sOc~O I 

-c4~sO cO J 

(lla) 

( l l b )  

3.2. A new quadratic kinematic equation 

Let us consider the 3-1-3 set of  Eulerian angles 
which obeys the following set of  differential 
equations [8]: 

0 = o~,. cos ~ - o9,. sin ~O (4a) 

= co.. - (wx sin ~b + ~o,. cos ~k)/tan 0 (4b) 

q~ = (o9 X sin ~0 + 09,. cos qs)/sin 0. (4c) 

Upon inverting these equations for ~o,., o9,., w. one 
obtains 

w,. = q~ sin 0 sin ~0 + 0 cos ~O (5a) 

o~,. = ~ sin 0 cos qJ - 0 sin ~O (5b) 

co. = q) + ~ cos 0. (5c) 

From (5a) and (5b) we get that 

09 = (6 I + iq~ sin 0)exp(- i~0)  (6) 

for the 3-1-2 and 3-1-3 sets, respectively with c 
denoting cos and s denoting sin. Since (i la) and (I lb) 
are different parametrizations of the same element of 
SO(3) we have, by comparing corresponding entries 
of the matrices, that 

sin ftx = sin 0 cos ~b, tan ft,. = - sin ~O tan 0 

sin 4~ cos 0 cos ¢ + sin ~O cos q~ 
tan ft.. cos ~b cos 0 cos qJ - sin ~b sin ~b" 

(12) 

The previous equations are the standard relation- 
ships that provide the exact transformations between 
the 3-1-2 and 3-1-3 sets of Eulerian angles. One 
therefore also easily establishes the following 
relations between ~,., ~.,. and the Eulerian angles ft.,. 
and ft,.: 

tan ft, = ~,, tan ft,. = ~,. cos ft,.. (I 3) 
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The last two equations along with eqn (12) can be 
used to transform back and forth between the different 
sets of parameters. 

Equation (10) is a system of exact  differential 
equations that describes the kinematics of the two 
Eulerian angles fix and /~  (in the 3-1-2 set), or 0 and 
~b (in the 3-1-3 set); the angles fl: or ~b are ignor- 
able variables in both sets and can be computed by 
quadrature once the other two angles are known. 
That is, the solution of (10) along with (8) or (13) give 
the exact solution to the differential eqns ( la)  and 
(lb) or (4a) and Ob). 

At first glance, it seems that no great improvement 
has been achieved by transforming to the new set of 
differential eqn (10). However this is not so, because 
the system of eqn (10) contains (up to quadratic) poly- 
nomial nonlinearities, whereas the original system of 
eqn (I) contains trigonometric nonlinearities. As such, 
the system of differential eqn (10), or equivalently (9), 
is suited for analytic treatments using series expan- 
sions, perturbation techniques or successive approxi- 
mations, whereas the original system of equations, in 
terms of the Eulerian angles, is not directly amenable 
to such techniques. In some sense, we have traded the 
two nonlinear differential eqns ( la)  and (lb) or (4a) 
and (4b) for the scalar, but complex, differential eqn 
(9), which has, nevertheless, a more suitable form for 
analytical studies. If we drop the nonlinear term in 
eqn (9) we get 

+ ito~ot = to (14) 

which is essentially eqn (3), the linearized system of 
eqn (la) and (lb). Solution of this equation along 
with (12) can be used for direct reinterpretation of the 
solution of (3) without the need to solve any new 
equations• For  a more detailed discussion on this 
approach see [9]. 

3•3. M e t h o d  o f  solution o f  the quadratic kinematic 
equation 

We now briefly discuss a procedure that will allow 
for approximate solutions of the quadratic kinematic 
eqn (9). Let the linearized solution of (9), be denoted 
by %--a~ 0 + iot,~, i.e. let 

a0 + ito:~t0 = to. (15) 

The solution to this equation, or equivalently to 
eqn (3), has been computed in [7]. Using this 
solution for ~0(t), one can then obtain the first-order 
approximation to (9) by solving 

~t + ito.ct = to + Re(e3~t0)~t 0. (16) 

Equation (16) is a linear differential equation that 
can be solved in terms of quadratures. Similarly, 
one can solve the zero-order solution and substitute 
into the first-order solution as follows 

+ i[to: + i Re(o)~)]ct = to. (17) 

In (17) the first-order solution has the effect of 
replacing the time-varying coefficient (frequency) 
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Fig. 4. Exact and analytic solution,/~. 

of the zero-order (linear) equation, with the complex 
quantity a3~to,+iRe(tSct0),  whereas in (16) the 
zero-order solution alters the forcing term of the 
equation. Preliminary simulations of the above two 
procedures indicate that these methods yield very 
accurate solutions of (9) and, in fact, capture the 
phase-shift error created by the zero-order (linearized) 
solution, an error which dictated the development of 
a large angle theory in the first place. Figure 4 shows 
that the result obtained for the solution for fix using 
eqns (16) and (13), for spin-down under constant 
torques, is a dramatic improvement over Fig. 3. 
The numerical values for the simulations were taken 
from [7]. 

4. DIRECTION COSINES 

4.1. Kinematic  equations f r o m  stereographic projection 

As already mentioned, each element of the rotation 
group SO(3) describes the orientation of two given 
sets of mutually orthogonal unit vectors (frames), 
the first of which is attached and moving with the 
rotating body, while the other remains constant. Both 
frames coincide at time zero. The attitude history of 
the moving reference frame with respect to the con- 
stant (inertial) reference frame can then be described 
by a curve traced by the corresponding rotation R ( t )  
matrix in SO(3). The differential equation satisfied 
while R ( t )  is moving along this trajectory is given by 

= S(m.,., toy, to:)R (18) 

where 

S(tox, o~,., to:)~ -09. 0 09,. . (19) 

o~, - t o ,  0 

This matrix differential equation involves nine par- 
ameters (the direction cosines of the corresponding 
frames), however because of the constraint R R  T = i 



186 P. TSIOTRAS and J. M. LONOUSKI 

imposed on the elements of SO(3), there are actually 
only three free parameters involved in the system of 
eqn (18). Now let [a, b, c] x denote a column vector of 
the matrix representation of R having entries rq, for 
i ,j  = I, 2, 3. That is, [a, b, c] T = [rlj, r2j, r~i] T for some 
j = 1, 2, 3. Clearly, 

. - -  O37, 

--o9, 0 

(.0 I, --  O~ x O 

Because of the constraint a 2 + b 2 + c 2 = I we can 
eliminate one of the three parameters a, b, c, to 
get a system of two first order differential equations. 
The most natural and elegant way to reduce the 
third order system (20) to a second order system is 
by the use of stereographic projection [10]. That  is, 
if we let a, b, and c represent the coordinates on the 
unit  sphere S 2 = {(xl, x2, x3)~ R3: x~ + x~ + x 2 = 1}, 
then for (a, b, c) e S z, the stereographic projection 
(a, b, c) ---* w, with w e C, is given by 

b - ia 1 - c 
w A _ _ _  

l + c  b + i a  

In terms of the complex quantity w, the system of 
differential eqn (20) can be combined in the single 
differential equation 

~o o5 2 
~b +iog:w = - ~ +  ~- w . 

The inverse transformation w--*(a, b, e) is given by 

i ( w -- ff~ ) w + if: 
a b =  Iw12+ 1 ' [w[2+ 1'  

Iwl 2- 1 
e - (23) 

Iwl2+ 1 

and can be used to find a, b, c once w is known. In 
(23) I • I denotes the magnitude of a complex number,  
i.e. z~ = I z [2, z e C. The real and imaginary parts 
of w ~w~ + iw 2 satisfy the differential equations 

(-O r ffl =°9:wz+~°,.w, w2+--~( 1 + w T -  w~) (24a) 

(2)  v 

)iJ2= --(.O:WI-bOgxWIW2-]-~(I -I- W~-- Wl). (24b) 

4.2. Method of  solution for the Riccati equation 
Equation (22) is a Riccati equation for w with 

time-varying coefficients, the solution of which is very 
hard to establish. However, an approximate solution 
can be obtained, along the same lines as for ~, 
as follows. One can obtain the zero-order (linear) 
solution of (22) by solving the equation 

( D  

~i'o + ioJ: w. = - - .  (25) 
2 

The solution is given by 

Wo(t)=wo(O)exp[-iIi~o:(u)du 1 

x f /~o(u)exp[ i f :~o: (v )dvJdu .  (26) 

(20) 
The first-order approximation of the solution of (22) 
can then be obtained by solving the linear equation 

+ i~o:w = ~ + w~ (27) 

the solution of which is given in terms of quadratures. 
In fact, the first-order approximation to the solution 
of (22) is given by 

w(t) = w(O)exp[- i  ; og:(u) du] 

(21) xf i05(u)exp[i f~o2=(v)dv]du (28) 

where 05 no)  + 05Wo z. Alternatively, one can also solve 
the linear equation 

v b + i  m : +  2w0 w = - ~ .  

(22) The difference between these two methods of solution 
lies in the fact that in eqn (27) the zero-order solution 
acts in such a way as to change the forcing term, 
whereas in eqn (29) it acts in such a way as to change 
the time-varying coefficient. Both equations retain the 
same form as the zero-order equation. The result of 
the solution of (22), using eqns (25) and (27), is shown 
in Fig. 5. Explicit formulas for the integrals that 
appear in (28) will be reported in a future work. We 
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Fig. 5. Exact and analytic solution, fl,. 
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note in passing that the solution to the linear eqn (25), 
or the linear eqn (15), is easy to establish. In fact, by 
simple comparison, one sees that eqns (25) and (15) 
are of the same form as eqn (3), of  the linearized 
3-1-2 Eulerian angle problem, which has been solved 
in [7]. 

4.3. Relation between w and 

The resemblance of eqns (22), (25) and (27) to 
eqns (9), (15) and (16), respectively, prompts one to 
investigate relations between w and ~. The purpose 
of this section is to show, that although these new 
kinematic equations are derived independently using 
two completely different procedures, they are never- 
theless intimately related. As a first step, we establish 
the relationship between w and the Eulerian angles. 
Notice that we can in principle identify the column 
vector [a, b, c] z in (20) with any column vector of the 
rotation matrix R, where R can be expressed in terms 
of any of the parametrizations of SO(3). For  a 
three-dimensional 3-1-3 Eulerian angle parametriz- 
ation, the matrix R(qS, 0, ~b) is given in ( l lb ) ,  how- 
ever, any other parametrization is equally valid. 
Identifying [a, b, c,] T with the third column of R, 
establishes a one-to-one correspondence 
(w I, w2)~--~ (0, ~), as follows. 

Let a = sin 0 sin ~k, b = sin 0 cos ¢ and c = cos 0. 
Then from (21) the following correspondence between 
w and ~b, 0 is easily established 

sin 0 sin ff + i sin 0 cos 
w 

1 + c o s 0  

sin 0 
= 1 + cos 0 exp(i~b) (30) 

or in terms of real and imaginary parts of w, 

cos 0 sin @ sin 0 cos 
w l =  l + c o s 0  ' w2= l + c o s 0  (31) 

Recall now that ct is related with 0 and ~k through 
the relationship (8). From (8) and (30) one then 
immediately has that 

w 
cos 0 = - - .  (32) 

Since 8 = tan0exp( i~k)  one obtains that w~ =(1 
- cos 2 0)/(1 + cos 0) cos 0 and using (32) one finally 
gets the following relation between w and ct 

w2~ = ct - 2w. (33) 

For small 0, cos 0 ~ 1 in (32) and hence w = ~t - w, 
or w = ~t/2. Comparison of the linearized eqns (15) 
and (25) shows that for small 0 (small deviations of 
the spin axis) these two equations are in fact identical. 

5. QUATERNION FORMULATION 

As mentioned earlier, the parametrization of the 
rotation group with three Eulerian angles, in addi- 
tion to the nonlinearity that it introduces in the 
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kinematical equations, also has the disadvantage that 
it introduces singularities, i.e. points at which the 
parametrization is not defined. If one needs to avoid 
the singular points, one has to switch to another set 
of Eulerian angles. It is possible to circumvent this 
difficulty and introduce a parametrization that is 
globally valid, but this will imply, necessarily, the 
introduction of redundant parameters. The most 
often used global parametrization of the rotation 
group involves the introduction of one additional 
redundant  parameter, and is called the quaternion 
method [8], first introduced by Lord Hamilton. The 
parameters are then called Euler parameters and in 
fact, when the kinematic equations are expressed in 
terms of these parameters, the result is a system of 
linear (although time-varying) differential equations. 
The linear nature of the kinematic equations is 
considered the most significant advantage of the 
four-dimensional parametrization of SO(3), limited 
however by the fact that, in general, no explicit 
formula for the solution of a system of linear time- 
varying differential equations is known to exist. It is 
true of course, that the solution to a system of linear 
differential equations is given in terms of the funda- 
mental (or state transition) matrix, but for the time- 
varying case, no general method exists for computing 
this matrix, and one often has to resort to numerical 
simulations. 

Next, we will show how one can apply a method, 
initially due to Picard [l l], to approximate the solu- 
tion to a linear, time-varying system of differential 
equations, as accurately as one desires, using the 
notion of the product integral. The methodology in 
essence seeks to approximate the state transition 
matrix and is semi-analytic in nature, since it is 
confined to small time steps. Picard's method can, 
in principle, be applied to all time-varying linear 
systems, but is especially convenient for the systems 
with the special form of skew-symmetric state 
matrices that appear in the kinematics of rotating 
bodies, since then the matrix exponentials can be 
computed in closed form. 

5.1. Kinematic equations from the quaternion 
formulation 

Recall that the quaternion vector q __4 q0 + q~ t + 
q2J +q3/~, evolves in time by the linear system of 
differential equations 

t]l 1 mx 0 " m. -to,, qt (34) 
~2 =2 to,. - to -  0 -  

q3 to- tot --to," OX • q 3  

where q0, ql, q2, q3 are the Euler parameters. 
Although the kinematic equations in this form are 
linear, closed-form solutions are extremely difficult to 
obtain, due to the time-varying nature of the differ- 
ential equations. Analytic solutions of (34) have been 
constructed for the special case of a torque-free 
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rotating body[12]. Kane[13] has also obtained 
approximate solutions to (34) for an axisymmetric 
rigid body subject to body-fixed transverse torques 
of constant magnitude, employing an averaging 
technique. Similar approximate solutions have also 
been reported by Kane and Levinson [14]. As often 
occurs in practice, rotating rigid bodies have an axis 
of symmetry, which is also usually the spin axis. If 
this is the case, then it is advantageous to introduce, 
in place of the quaternions, the parameters 

pA-qo+iq3  and a ~ - q l + i q 2  (35) 

because then, using (35), (34) can be reduced to the 
compact form 

[:] =;F/co: Lco (36) 

The reason we prefer to work with (36) rather than 
with (34) is that for the case of spinning (usually near- 
symmetric) rigid bodies, one often takes advantage of 
the special skew-symmetry of the equations to obtain 
the solution of the transverse components of the 
angular velocity cox and coy in the compact complex 
form of co = co X + icoy. Van der Ha [15] attempted to 
obtain approximate solutions to equations of the 
form (36) using a perturbation scheme. Perturbation 
methods have also been used to obtain approximate 
solutions to the original form of eqn (34) by Kraige 
and Junkins [16]. 

Notice that eqn (36) is of the form 

= A ( t ) ~  (37) 

which is a linear, time-varying differential equation in 
vector format. The solution of the previous differential 
equation is given by 

~(t) = q~(t, 0)~(0) (38) 

where ~(t, 0) is the product  integral (state transition 
matrix) satisfying the matrix differential equation 

~ ( t , O ) = A ( t ) ~ ( t , O ) ,  q~(0, 0) ~ L (39) 

Following Nelson [11], the solution of the previous 
equation is approximated by 

q~(t, 0) = exp(An Atn)-" • exp(Al Atl ) (40a) 

A j = A ( t )  for t j _ l < t < t j  

and 

Atj = tj - tj_ l , O = to < tl < " " < t, = t (40b) 

Notice that in (40) operators with the smallest value 
of the time parameter operate first. This is very 
important, because commutativity does not hold in 
general between matrix exponentials. For Atj---, 0 
(j = 1, 2 . . . . .  n), eqn (40) gives the exact solution to 
the differential equation for q~(t, 0). 

The closed-form calculation of the matrix exponen- 
tial exp[A (t)] for a time-varying A (t) is, in general, a 
formidable task. However, for the special structure of 
the matrices that appear in eqn (34), or equivalently 
in eqn (36), one can immediately verify[13], that 

exp(A ) = I cos(v) + A sin(v) (41) 
v 

where v2-~det(A) = coo5 + co~ = co~ + co~ + coz. and I 
is the 2 x 2 identity matrix. This formula holds for 
all skew-hermitian matrices A, for which A 2= 
-det(A)l .  One can easily verify this property for 
the matrix in (36). Use of for/mhla (41) allows the 
(approximate) evaluation of the exponentials in 
eqn (40a) for qB(t, 0). However, an accurate calcu- 
lation for q~(t, 0) will require very small time intervals 
Atj. We can circumvent this difficulty, and extend the 
solution to larger time steps, but we first require some 
results from the theory of Lie groups and their 
associated Lie algebras. 

5.2. Generalized B a k e r - C a m p b e l l - H a u s d o r f f  f o rmula  

Because of the special structure of the state matrix 
A in (37), it is known that the state transition matrix 
q~(t, 0) is a unitary matrix, and as such, it is given by 
the exponential of some skew-hermitian matrix W ( t ) ,  
i.e. ~(t, 0) = exp[W(t)] for all t. We want to find the 
matrix W ( t ) ,  starting from eqn (40a), namely, to 
combine the product of exponentials into a single 
exponential (that of the matrix W). Recall that if .J(, 
Y are n x n matrices, then exp(X)exp(Y) :~exp(X 
+ Y), in general, unless X Y  = YX ,  i.e. unless the 
matrices X and Y commute. However, the following 
result from the Lie group theory [17] states that if X 
and Y are sufficiently near the zero matrix, there 
exists a matrix Z in the Lie algebra generated by X 
and Y that satisfies 

exp(Y) exp(Y) = exp(Z). (42a) 

Specifically, Z is given by the expansion 
1 z = x + r + ~[x, Vl + ~ [x ,  [x, r l ]  

+ I [ [ x ,  Y], Y ] + . . .  (42b) 

where [-,.] denotes the Lie bracket (commutator), 
defined by [X, Y] zx X Y  - YX.  Equation (42) is called 
the Baker-Campbell-Hausdorff formula. Applying 
this formula to eqn (40a), starting from the left, and 
keeping terms only up to O(At2), we get that 

• (t, 0) = exp(AnAtn)' ' • exp(A2At2)exp(Al  Att ) 

=exp(A,At,) . . .  exp(A3At3)exp(/i2) (43a) 

where 

• 42 = A2At2 + A i A h  

4- ½[A2At 2, A i A/I] "]- O(A/3). (43b) 

The next application of the BCH formula to the 
exponentials exp(A3At3)exp(/i2), keeping again only 
terms up to O(At2), gives 

q~(t, 0) = exp(A,At,) . . ,  exp(A4At4)exp(A3) (44a) 

where 

4 3 = A3At  3 -1- A2At2 + A i A t l  

+ ½[A2At2, AI Atl] 

+ ½[ABAt3, A2At2 + AI Ah] + O(At3). (44b) 
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Continuing the same way, one obtains the following 
approximation of 4~(t, 0) to order O(At~): 5- 

¢~(t, 0) = exp AjAtj 
L . i =  1 ~.. 

1 -= ] } ~- 
+- ~ [ "-' O(At 3) (45) A>Atj, ~ A~At i + 
2/.,L , = ,  

Taking limits for n- ,oo,  or At--,0, one easily gets 
from the Riemann sums of (45) that .g 

¢(t,  0) = exp[W(t)] ~a- 

Io ° W(t) ~- A(Qd% 

Ifo[ fl 1 + ~  A(z)dz, A(o)do + . . . .  (46) 

Equation (46) gives the expression for the state ~" 
transition matrix ~(t, 0) required for the solution of 
(37). It can be easily verified that the matrix W is 
skew-bermitian with W 2 = - d e t ( W ) l  so that it has 
the form required, in order to compute its exponential 
from ¢qn (41), for all t. The calculation of W(t) from 
(46) can be performed easily, by direct integrations. 
From (36) 

i co~ (%) dr l - fo (3(r) dr 

--i co~(%)d% (47) 

Because of the skew-hermitian structure of the matrix 
A, one needs to calculate only two of the above 
integrals. The second term of W(t) requires the 
evaluation of 

fo[ fl 1 ,4 ( t ) -  ~ A(r), A(o)do dr. (48) 

Carrying out the algebra, it can be immediately 
shown that [A(%), S~ A(a) do] takes the form 

OUATERNION SOLUTION - CONSTANT TORQUE5 
TWO TERMS IN EXPANSION FOR W ( t )  

o 5PIN-DOIJN FROM 3.15 RPM TO -3.15 RPM 

•]•••••••••••••••••i•••••••••••••••••i•••••••••••••••••i•••••••••••••••••••••••••••••••••• 
i 
i 
T 

o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i 

o 

~0 44 " ~  13,?. 17S 
T ( s e c )  

Fig. 6. Exact and analytic solution, fix. 

2 2 0  

expressions for the angular velocities cox, co>., and co:, 
symbolic language manipulation routines can be used 
to alleviate the effort. 

The BCH Theorem states that (42) holds for some 
matrices X and Y "close" to the zero matrix. That is, 
X and Y should be "small" with respect to a norm 
]l" H that is compatible with the Lie bracket operation, 
i.e. a norm such that I[ [X, Y] H ~< I[ X II H Y I. Thus, the 
expansion (42b) is only locally convergent, so (42a) 
can be used to determine the existence of Z in the Lie 
algebra generated by X and Y when the norm of 
[X, Y] is sufficiently small. The applicability of the 
BCH formula is thus limited inside a ball of unit 
radius (with respect to a compatible norm). This local 
convergence of the BCH formula restricts the validity 
of (46) to the neighborhood of t = 0-A To . One can 
circumvent this problem, by redefininig the initial 
condition in regular time intervals as follows: choose 
a time Tl such that the series in (46) converges. Then 

co f f  ~S d% -~S f f  co d% 

2i[co fo  coz dx - co: fo  co d% 1 

2i a3 co: dr - co: 03 d% 

;: f0 J ~ co d~ - co o3 d% 

(49) 

Again, because of the special skew-hermitian structure 
of the matrix .4, we need to evaluate the integrals of 
only two of the entries of/1, say 

,~,~(t)=2ifflm[co(off~(o)da]d% (50a) 

;o ] - CO:(Q co(o) do dz. (50b) 

Of course, the calculation of the integrals of these 
quantities becomes very involved• For simple enough 

the solution is given by 

~( t )=  ff~(t, T0)~(T0), for T 0~<t < 7"1. (51) 

Next choose a time T 2 such that the series expansion 
starting from T 1 converges. Then the solution is 
given by 

(t) = ¢,(t, 7"1 )~(Tt ), 

T~ ~< t < T2, and ~(T~) = ¢(T~, To)~(To). (52) 

In practice one usually chooses T i + t - ~ = T ,  
(j = 0, 1, 2 . . . . .  n - 1). Thus, redefining the initial 
condition every T seconds, one can keep the norm 
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of the matrices small and keep the convergence of 
the BCH formula under control. The result for the 
solution of (36) using ~P(t, 0) from (46) with only 
the first two terms, and with reinitialization every 
10 s, is shown in Fig. 6. Once one knows q0, ql, q2, 
q3, the Eulerian angles fix, fl,., /~.- are given by 
comparing ( l l a )  with the corresponding typical el- 
ement of SO(3), when expressed in terms of the Euler 
parameters. For  such a parametrization we have [8] 

ability is especially suited for rotational dynamics 
problems, because then one can evaluate the arising 
matrix exponentials in closed form. 
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