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Abstract

Discontinuous, time-invariant controllers have been re-
cently proposed in the literature as an alternative method
to stabilize nonholonomic systems. These control laws are
not Lipschitz continuous at the origin and hence they may
use significant amount of control effort, especially if the ini-
tial conditions are close to an equilibrium manifold. We seek
to remedy this situation by constructing bounded convergent
controllers (with exponential convergence rates) for nonholo-
nomic systems in chained form.

1 Introduction

In this paper we focus on the problem of designing feed-
back control laws for a nonholonomic system in chained form
using inputs bounded by an a priori specified upper bound.
It is well known that nonholonomic systems may not sat-
isfy Brockett’s necessary condition [3], thus no time-invariant
smooth, static stabilizing controller exists. One possible av-
enue to deal with the difficulties implied by Brockett’s the-
orem is to use time-varying controllers. This approach has
been extensively investigated during the last few years with
great success [12, 9, 11, 4, 2, 14]. It can be shown that time-
varying smooth control laws for driftless systems have neces-
sarily algebraic (not exponential) convergence rates [10].

More recently, another group of researchers concentrated
on the design of time-invariant discontinuous controllers
which achieve exponential convergence rates. Based on a
nonlinear transformation, an exponentially convergent con-
troller (which, however, may not necessarily achieve stability
in the sense of Lyapunov) is constructed in [1] for chained
form systems. A non-smooth controller for attitude stabi-
lization of an underactuated spacecraft was proposed in [16].
This idea was later expanded upon and used to construct ex-
ponentially stabilizing control laws for a 3-dimensional sys-
tem in power form [15]. Recently, time-invariant discontin-
uous controllers for n-dimensional power form systems was
reported in [7] using an iterative algorithm.

A common characteristic of all these discontinuous con-
trollers is that the control input may become excessively
large, especially for initial conditions close to a certain singu-
lar manifold which includes the origin. In [8] the non-smooth
controller proposed in [16] was modified, to remedy the prob-
lem of large control inputs. In this paper we generalize this
idea to general nonholonomic systems in chained form. The
construction of the proposed controller was inspired in part
by the recent developments on input saturation for linear
systems [6, 5]. These results (either in terms of global or
semi-global stability) cannot be used directly, however, since
the transformed linear system is not asymptotically null con-
trollable.

The paper is organized as follows. In Section 2, we in-
troduce a nonlinear coordinate transformation (called the o-
process) presented in [1], which transforms an n-dimensional
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chained form system to a linear system. Although this linear
system has open loop positive eigenvalues, these eigenvalues
can be made arbitrary small by selecting control gain small
enough. This observation, is used in Section 4 to construct
a bounded controller, which guarantees exponential stability
of the linear system with bounded inputs. In addition, the
domain of attraction of the closed-loop system contains an a
priori given set, corresponding to the so-called “good” region.
In Section 5 we complete the controller design by construct-
ing a bounded controller such that for all initial conditions
outside the “good” region, the trajectories of the closed-loop
system converge to this region in finite time. A numerical
example is provided in Section 6 to illustrate the theory.

The notation used in the paper is standard. For a vector
z € IR"™, |z| denotes the euclidean norm, for a square matrix
A, Amax(A) and Amin(A) denote its maximum and minimum
eigenvalues respectively, sp(A) denotes its spectrum, and A”
denotes its transpose. I denotes the identity matrix. Finally,
the notation f € L» implies that [~ [f(t)| dt < oo.

2 The o-process
Several nonholonomic systems, after appropriate state
and input transformations [9], can be put to the so-called
chained canonical form. The 1-chain single generator system
with two inputs is given by

:i:l = U1
Tz = U2 (1)
j;i = Ti—1U1 223, R 1

The following transformation, valid for all z; # 0,

&1 = .
&L = x (2)
Ti
& = == i =3, n
zi?
applied to Eq. (1) yields
él = u
& = wur (3)
. . ul
& o= Ea—-0-286) -~ i=3...n
&1
If we let u1 = —k &1 the £-system becomes
-k 0 0 ... 0 0
0 0 0 ... 0 1
i=| 0 R ko0 el 0w @
0 0 0 (n—2)k 0

This is a linear system with u» as the new input. For
more detail on this transformation, please refer to [1]. Since



the system in Eq. (4) is stabilizable, one can choose a linear
control law [1]

Uz =paéo+p3és+ ... +pnén (5)

to place the eigenvalues in the left-half of the complex plane,
and make the closed-loop system (in £-coordinates) globally
exponentially stable. The previous linear control law is not
defined in the set

S={reR":z1=0andz; #0, i =2,3,...,n} (6)

Moreover, one cannot conclude that the original closed-loop
system in Eq. (1) is asymptotically stable, since the transfor-
mation in Eq. (2) is not a diffeomorphism.

Although the control law in Eq. (5) is well defined for all
initial conditions such that z1(0) # 0, it is clear from Eq. (2)
that the control input us may take excessively large values
when the initial conditions are close to the singular manifold
S. Similar problems are encountered with the discontinuous
control laws proposed in [16, 15, 7].

3 Statement of the problem and approach
We wish to derive a globally valid control law for the
system in Eq. (1) such that the following two properties hold.

1. For all initial conditions z(0) € D = IR"\S, we have that
lim¢ 00 z(t) = 0.

2. The control law u is bounded as |u;| < @, (: = 1,2),
where u is any a priori given positive number.

We only impose convergence of the closed-loop trajecto-
ries of the system in Eq. (1) to the origin. Attractivity to
the origin for the system in Eq. (1) can be easily deduced if
the linear system in Eq. (4) is asymptotically stable or even
convergent [1, 7]. Moreover, since {1 = z1 and &2 = x2, the
control inputs u; and u» are the same for both systems. If the
system in Eq. (4) is asymptotically stable (or even conver-
gent) with input bounded by %, then the trajectories of the
system in Eq. (1) will converge to the origin and the control
will also be bounded by .

Recently, numerous results have appeared in the litera-
ture dealing with the problem of global or semi-global stabi-
lization of linear systems with bounded inputs [5, 6]. Unfor-
tunately, the open-loop system in Eq. (4) has positive eigen-
values, so it is not asymptotically null-controllable [5]. Thus,
we cannot use directly these results to derive bounded con-
trollers for (4). However, the eigenvalues of the uncontrolled
linear system in Eq. (4) can be moved arbitrarily close to
the imaginary axis by appropriate choice of the control gain
k. This allows the construction of exponentially stabilizing
controllers for the system in Eq. (4) which are bounded by
an arbitrarily small upper bound.

4 A semi-global controller

In this section we design a controller such that, if the
initial conditions are in a given set, the trajectories of the
system in Eq. (1) tend asymptotically to the origin and the
control input is bounded by «. In addition, this set can be
chosen arbitrarily large.

To proceed with our analysis, we first decompose the sys-
tem in Eq. (4) as

§1=-k& (7a)
0 0 0 0 1
| -k ok 0 0 1o
€= : : £+ us  (7b)
0 0 “k (n-2)k 0

with £ = [62, €3, ..., €n]T. Define the constant matrices A
and B as follows
0 0 ... 0 0 1
-1 1 ... 0 0 0
A= , B= (8)
00 ... -1 (n—2) 0
Then the £-subsystem can be rewritten as
E=kAE+ Bus (9)

The construction of the controller requires a certain class
of functions which increase no slower than linear.

Definition 4.1 A continuous function ¢(x) will be called a
linear dominant function (1.d.f for short) if it satisfies the
following three properties:

1. It is monotonically increasing for > 0 and ¢(0) = 1.
2. It is an even function, i.e., ¢(z) = ¢(—z) Vzr € R".
3. |z| < ¢(x) for all x € R".

From the definition it follows immediately that
limgoe0 @(z) = o0 For example, the functions

6(z) = 1+ ], ¢() = ViFa® and g(z) = 1+ 2
are all L.d.f. In particular, any function of the from
1+e
olz)=(1 +x2p)% with e >0and p=1,2,...is Ld.f.
The following theorem provides a controller for the sys-
tem in Eq. (3) which is bounded by 4.

Theorem 4.1 Consider the system described by Eq. (3) and
the region given by DY ={£ €D :[£| <d}. Let @ be a given
positive number and let P be the positive definite symmetric
matriz which solves the equation

(A+I)P+P(A+1)" = BB (10)

Define the matriz A. = A — BBTP! and let k =
min{a, up/d} where p = Amin(P). Then, the control law

—k& /(&) (11a)
~kB"PTE/p(¢1) (11b)

with ¢(-) as in Definition 4.1, renders the system in Eq. (3)
asymptotically stable. In addition, for all initial conditions
£(0) € DY, both u1 and ua are bounded by .

U1 =

U2 =

Proof. The equation for &; is given by &1 = —k&1/¢(&1). All

solutions of this system converge exponentially to the origin

and the control law u; is bounded by |u1| = k|&1]/#(&1) < 4.
Define a new independent variable,

. £ do
“/0 () (12)

Note that 7 is monotonically increasing and lim¢ o, 7 = 00.
Denoting differentiation with respect to 7 by (), one obtains
that, ~ B

& =kAE+ Biis (13)
where 2 = w2 ¢(€1). Since the pair (A, B) in Eq. (13) is
controllable, it can be easily shown that the pair ((A+1), B)
is also controllable. Moreover, all the eigenvalues of —(A+1)

are negative. Therefore, there exists a unique P > 0 which
satisfies Eq. (10). From Eq. (10) we have,

(A+DEkQ + Qk(A+1)" = BB (14)



where Q = P/k. It is now easy to check that,

(Ak + Ik — BB"Q "Q + Q(Ak + Ik — BBTQ )"
=(A+DkQ+ Qk(A+ 1" —2BB" = —BB" (15)

Since the pair ((Ak+Ik—BBTQ™"), B) is controllable and Q
is positive definite, the matrix Ak+Ik—BBTQ ! is Hurwitz.
In particular, the matrix Ak — BBTQ ! = k A. is Hurwitz
and Re(\) < —k for all X € sp(kA.). With us as in Eq. (11b)

one obtains §~' =k A. € and the g-subsystem is exponentially
stable (in 7) with rate k. Since §; decreases monotonically to
zero one obtains that ¢(&1(¢)) < ¢(£1(0)) for all ¢ > 0. Hence

. ¢ do ¢ do . t
T‘/O ) Z/O @) @y 19

From the exponential stability of the system & = k A. £ one
obtains that

co |(0)] exp(—k7)
co |€(0)] exp(—kt) (17)

where k = k/¢(£1(0)). Hence, the é-subsystem with control
(11) is exponentially stable (in ¢) with asymptotic rate of
convergence k.

Note that A is Hurwitz and satisfies the matrix inequal-
ity AcP + PAT < 0. Therefore, if |£(0)] < & one obtains
that,

<
<

PR < €T (0)PTHE(0)
< Amax(PTHIEO0)
< Amax(P71) 6 VE>0 (18)

A straightforward calculation shows that,

~ 1
max [P '] =0 Aa(P7Y) (19)

€T P=1{<qo?
For all initial conditions £(0) € DY we finally have that,
KIBTPTE/o(61)] < kP
< k6 Amax(P™H) =k

e

|uz|

The previous theorem shows that for all initial conditions
in the “good” region DJ the trajectories of the closed-loop
system with control law as in Eq. (11) tend exponentially to
zero. The set DY can be made arbitrarily large by appropriate
choice of the parameter §. As § — oo then the region D
increases and tends to the region D.

Remark 4.1 Theorem 4.1 makes no claim that the trajec-
tories have to stay in DJ. Nonetheless, from the proof of
Theorem 4.1 one immediately obtains that for all initial con-
ditions in the set DI = {¢ € D : 7P '¢ < 47}, the trajec-
tories of the closed-loop system remain in DY (ie., Df is a
positively invariant set) and they tend exponentially to the
origin.

It is worth noticing that the matrix P in Eq. (10) is
independent of k and thus the set D does not depend on
the choice of k. Moreover, from (19) we have the bound

- 1 _ _ -
|P71E| < A2ax(P™") 6 for all £ € DY.
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Figure 1: The regions D¢ and D} = D\DY for § = 1.

From Theorem 4.1 and the Remark 4.1 we have immediately
the following corollary.

Corollary 4.1 Consider the system in Eq. (1) with the con-
trol

—kx1/p(x1) (21a)
us = —kBTPT'é/¢(x1) (21b)

U1 =

1 _
where p = X2, (P) and k, B, P, £ as in Theorem 4.1 and
@¢(-) as in Definition 4.1. Then, for all initial conditions
£(0) € DY, the trajectories remain in DY for all t > 0 and
satisfy the property im;_, o x(t) = 0. In addition, the control

law is bounded by |u;| <@ (i =1,2).

5 A global controller

To complete the construction of the controller, we need to
force all trajectories starting in the “bad” region D = D\D{
to enter the region Df in finite time.

Proposition 5.1 Consider the system in Eq. (3) and the
control law

u = ké&/é(&) (22a)
_ €
L ) (220)

with k > 0. Then, for every v > 0 and £1(0) # 0, there exists

a time t* > 0 such that |E(t)| < ~ for all t > t*. Moreover,
if k <@ then |u;| <@ (i=1,2).

Proof. The differential equation for &; is given by

& =ké/(6) (23)

Clearly, lim¢—, o &1 () = oo for £1(0) # 0. Consider again the
change of independent variable introduced in Eq. (12). Since

B t dO’ B 1 51("‘) df
= / SE(@) "k /5 o € @)



one obtains that 7 is monotonically increasing and
im0 T = 0.

With the control law as in Eq. (22) the closed-loop system
in Eq. (7b) can be written in the form

—k 0 ... 0 0 k
kK -2k ... 0 0 0
¢ _
= T A
0 0 ... k —(n—2)k 0
(25)
where ¢ = [£3,...,&,]7 and where & satisfies the equation

& = —k&/p(€2). The last equation implies that & € Lo.
Since the matrix in Eq. (25) is Hurwitz, ( € £» [13]. More-
over, lim;_,o ((t) = 0 and thus lim¢— o £(t) = 0. Therefore,

there exists a time ¢* > 0 such that |£(t)| < ~ for all ¢ > ¢*.
Note that if ¥ < @ then |ui| = k|&1]/¢(§1) < 4, and

similarly,
E o |&| k _
Uz| = < <u 26
el = S ot < ot 20)
This completes the proof of the proposition. [ ]

Lettmg 7= J/Amax( ~1) in Proposition 5.1 one obtains
that €7 (8)P7E() < Amax(P7Y)|E(E)]2 < 62 for all £ > t*. In
other words, the control law in Eq. (22) will force all trajec-
tories enter the region DY in finite time.

The following Theorem combines the results of Theo-
rem 4.1 and Proposition 5.1 to obtain a global convergent
controller bounded by a specified upper bound.

Theorem 5.1 Let the system in Eq. (1) and consider the
following control law

( (g) it 2(0)=0
()] NE) e
( g}g;) it ¢eD?
() ween

Then, for all initial conditions (0) € R™, the closed-loop
system trajectories satisfy the property lim; oo z(t) = 0 and
the control law is bounded as |u;| < u (i =1,2).

Proof. Note that if z(0) ¢ S then z(t) ¢ S for all t > 0
and the control law in Eq. (27) is well defined for all ¢t >
0. The rest of the proof follows as a direct consequence of
Corollary 4.1 and Proposition 5.1. ]

From the previous discussion , it should be clear that the
asymptotic convergence to the origin with the control law in
Eq. (27) is exponential.

6 Numerical example

We consider a 5-dimensional chained form system. We
assume @ = 10 and we choose § = 0.37. Because the mini-
mum eigenvalue of the matrix P in Eq. (10) is typically small,
the convergence in the D{ may be slow. To keep the rates
of convergence in both regions the same for the simulations
we have chosen k = 10 both in DJ and D, Our simulations
showed that this value gives a good compromise between the
maximum control input and the speed of response.

The simulations for an initial condition zo =
[1,1,—2,1,3] and ¢(z) = /1 + 22 are shown in Fig. 2. The

s 0f e = — / N
- - / N
. ~
/ \ !
5t u, /
1
_10 I I I .
0 0.5 1 15 2
Time

Figure 2: History of states and control inputs with con-
straints.

300

200, b

100 b

x 0
-100{ R
-200 —
300 \ \ \ \ \ \ \
0 0.5 1 15 2 25 3 35 4
Time
6000
[
4000 (- B
1
]
> 20001 / ‘2 1
| - =
Y - - - _
\ 7
\
N7 ’ u‘
2000 \ \ \ \ \ \ \
0 05 1 15 2 25 3 35 4
Time

Figure 3: History of states and control inputs without con-
straints.

upper plot shows the states and the lower plot in Fig. 2 shows
the control inputs. The control inputs are bounded by @ as
required.

For comparison, Fig. 3 shows the state and control his-
tories for the corresponding control law without input con-
straints. The gains where chosen such that the convergence
rates are approximately the same as for the bounded input
case.

7 Conclusion

In this paper, we describe an approach to address a com-
mon problem associated with a class of discontinuous con-
trollers for nonholonomic systems proposed recently in the
literature. Namely, these feedback controllers may require
very large control inputs if the initial conditions are close to
a singular manifold. The proposed methodology decomposes
the state space into two separate regions and the controller
forces all trajectories into a region where all control inputs
are typically small. The control law guarantees exponential
convergence of the closed-loop trajectories to the origin using



bounded control inputs.
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