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Abstract

This paper introduces a new method for constructing ex-
ponentially convergent control laws for n-dimensional nonholo-
nomic systems in power form. The methodology is based on the
construction of a series of invariant manifolds for the closed-
loop system under a linear control law. A recursive algorithm
is presented to derive a feedback controller which drives the
system exponentially to the origin. A numerical example illus-
trates the proposed theoretical developments.

1. Introduction

Nonholonomic control systems commonly arise from me-
chanical systems when non-integrable constraints are imposed
on the motion, e.g., velocity constraints, which can not be in-
tegrated to generate constraints on the configuration space.
Examples include a rolling disk [1], mobile robots [2] and un-
deractuated symmetric rigid spacecraft [3, 4]. One of the main
reasons these systems have attracted much attention in the
past few years is that they represent “inherently nonlinear”
systems in a certain sense. For example, these systems are
controllable but not stabilizable by a smooth static or dynamic
state feedback control laws [5].

A number of approaches have been proposed to solve
the stabilization problem for nonholonomic systems. These
methodologies can be broadly classified as discontinuous, time-
invariant stabilization and time-varying (usually smooth) sta-
bilization. The non-smoothness of time-invariant feedback con-
trols is a consequence of the structural properties of the system
[5]. Stabilization results using non-smooth, time-invariant con-
trol laws have been proposed in [3, 4, 6, 7, 8]. References [3, 4]
deal with the attitude stabilization of underactuated spacecraft
by developing non-smooth, time-invariant control laws. Piece-
wise continuous stabilization controller have been reported in
[6, 7]. A nonsmooth transformation was used to develop time-
invariant, exponential convergent controller in [8]. Samson in
[9] showed how to asymptotically stabilize a mobile robot to
a point using time-varying, smooth state feedback. Coron in
[10] proved that all controllable driftless systems could be sta-
bilized to an equilibrium point using smooth, periodic, time-
varying feedback. References [11, 12] and [13] deal with the
construction of time-varying control laws for several nonholo-
nomic systems. Hybrid feedback time-varying control laws are
constructed for a class of cascade nonlinear systems in [14],
which could also be used for stabilizing a class of nonholonomic
systems, as well as for solving tracking problems. References
[15] and [16] develop time-varying control laws of exponen-
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tial convergence with respect to homogeneous norms. Finally,
[17] develops nonsmooth, time-varying feedback control laws
which guarantee global, asymptotic stability with exponential
convergence about an arbitrary configuration. For a more com-
prehensive review of all the recent advances in the control of
nonholonomic systems the interested reader may consult [18].

The analysis of dynamic systems is often simplified by the
introduction of canonical or normal forms, that is, systems
of equations which all systems in a given family are “equiv-
alent” to. For nonholonomic systems there are two normal
forms which have been used extensively in the past, namely, the
chained form and the power form. The mathematical model
of an n-dimensional nonholonomic system in power form with
two inputs can be described as [7, 18]

$.1 = U1
. _ 1 72
Ty = T o Ty U2,
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Although not all nonholonomic systems can be transformed
into chained or power form, a large number of mechanical sys-
tems encountered in practice can be converted into these forms.
Wheeled robots, multi-trailers, underactuated symmetric rigid
spacecraft are only but a few examples.

In this paper we derive feedback control laws for nonholo-
nomic systems in power form with two inputs. We first show
that a set of invariant manifolds can be constructed for n-
dimensional nonholonomic systems in power form. These man-
ifolds are derived from the exact closed-loop system solution
subject to a linear feedback law. The derivation of these man-
ifolds for systems in power form first appeared in [7]; no con-
trollers were derived for the general case, however. Here we
use these manifolds to introduce state and input transforma-
tions. The transformed system is still in power form but of
reduced dimension. By repeating the process we end up with
a 3-dimensional system in power form which is easy to stabi-
lize. We show that the stabilization of this system implies the
stabilization of the original n-dimensional system.

The resulting controllers are similar in form to the ones
proposed in [8], where discontinuous controllers for chained
systems were constructed by a nonlinear transformation (o
process). The approach proposed here, on the other hand,
generates controllers with multi-time scale convergent proper-
ties, as a result of the invariable manifold method, which is not
present in [8].

The paper is organized as follows. Section 2 derives the in-
variant manifolds and discusses their properties. In Section 3
we present a recursive algorithm for power form systems based
on the derived invariant manifolds. We also provide an ex-

j=2,3,..
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ponentially convergent controller for a 3-dimensional nonholo-
nomic system in power form. The main result of the paper is
given in Section 4 (Theorem 4.1). We basically show that the
feedback control law for the 3-dimensional generated system in
power form can be used to make the original n-dimensional sys-
tem exponentially converge to the origin with a proper choice
of the control gains. A numerical example in Section 5 illus-
trates the theoretical developments.

2. Invariant Manifolds and Their

Properties
Consider the system in Egs. (1) and the following linear

feedback
_ U1 _ —k$1
c[n]-[ ] e e

With this linear control law, the closed-loop equations are

$.1 = —k$1

b
(=2

Equations (3) can be explicitly integrated to obtain

T; = - kol ™ 5, j=2,3,...,n (3)

$1(t) = T10 S_kt

$2(t) = 20 S_kt (4)
1 _ —(j—
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where 7 = 3,4,..., n, 50 = [z10, %20, T30, ..
the initial state of the system, and where

.,xno]T c R” is

b
(7 +1)!
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Each equation in Egs. (5) defines a smooth function in terms
of ©1,x2,...,%,. Therefore, Eqs.(5) define a series of smooth
manifolds by

II; ={z € R" : 51 (z) =0},

each of dimension n — 1. Consider the following smooth man-

ifold
n—2
= ﬂH]:{xE%":sld(x)ZO, Jj=1,2,...,n—2}

j=1

Since

rank [8;#] =n—2 (7)

T
IT is a two-dimensional smooth manifold [19].
Lemma 2.1 Consider the system in Eqs. (1) under the feedback
control in Eqs. (2) and the manifold II. Then, for all initial

conditions xo € 1l the closed-loop trajectories of the system will
tend to the origin exponentially, with rate of decay k.

Proof: First we show that each manifold II; is invariant
for the closed-loop system. Indeed,

1

517] = ijj+2 — m (] x{_1$.1$2 —|— ${$2)
1 1 .
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Subsequently, the manifold II is invariant for Egs. (3). For
zo € II the solutions of the closed-loop system are given by

$1(t) = T10 S_kt
1 —2 —(j=1)kt -
zi(t) = mxio a0 VTR =23 n
The assertion of the lemma follows immediately. n

The idea of constructing invariant manifolds by directly in-
tegrating a closed-loop system subject to linear feedback has
been initially used in [4] to derive controllers for underactuated
symmetric spacecraft. This idea was subsequently generalized
to nonholonomic systems in power form in [7].

3. A Recursive Algorithm for Systems in

Power Form

In this section we present a recursive algorithm to create
a series of systems which will be used to construct convergent
feedback controllers for the system in Eqgs. (1). All the systems
generated by this recursive process (herein called the generated
systems) can be put into power form through a linear trans-
formation. These generated systems are, however, of reduced
dimension. The methodology is based on the idea that by
constructing a set of (n — 2) manifolds for the n-dimensional
system, the problem of constructing convergent controllers for
the initial system becomes one of constructing convergent con-
trollers for a similar system in power form but of dimension
(n —1). By repeating this process, we end up with a system
in power form of 3-dimension.

3.1. The Recursive Process
Consider the n-dimensional system as given in Eqgs. (1), and
construct a set of (n — 2) invariant manifolds under the linear

feedback wy = — k&1, up = —kzz as in Eqgs. (5). Define the
following linear transformation

T21 = I

T2 4 = jS17]_1, j:2,3,...,n—1 (8)

Then one obtains the following system in terms of z,;, for
1<j<n—1.

To1 = U2 (93)

L2, (j_1—2)1$%;2u2,2, J=23,...,n—1 (9b)
where

21 = U (10a)

U22 = Titp — L2l (10b)

The system in Eqgs. (9) will be called the generated system of
second order and we use the first index in the subscript of
the state elements to denote this. For consistency, we define
the first generated system to be simply the original system in
Eqgs. (1), that is, we let z1 ; = z; for 1 < j < n. Notice that
the system in Eqgs. (9) is a system in power form of dimension
(n —1). The same process can be therefore repeated.

After repeating this process (i — 1) times one obtains the
ith generated system (of dimension (n — i+ 1))

Tinl = Ui

1 - . .
m$£712u1'72, ]:2,3,...,17,—1—1—1

(11a)
(11b)

Tij =



For the ith generated system, one can construct (n — ¢ — 1)
invariant manifolds using the linear control law

(12a)
(12b)

wig = —kxia

1—1
Uz 2 = -2 kmig

;

and the methodology described earlier. The corresponding

manifolds are defined by

M, ={z € R isi;(x) =0, 1<j<n—i—1}

(13)

where )
2t j
Si,y = Tij+2 — mxmxl}? (14)
where y =1,2, ..., n —1— 1. Defining now
Titi1 = Tia
Tiy1,; = (2i_1+j)si7]_1, §j=2,3,...,n—1

the (z + l)th generated system can be described as follows

Ti41,1 = Wit
1
.. 72 . . .
Titl,y (]_2)' xi+171uz+1,2, 7 —2,3,..., n—1
where
Uit1,1 = Uil (15a)
i—1
Uit12 = Tintiz — 27 wi1Ti2 (15b)

This process can be continued until the (n — 2)th generated
system, which is the 3-dimensional system

Tpno21 Un—2,1 (16a)
Tno22 = Un—2.2 (16b)
Tp_23 = Tn-21Un-22 (16c)
By construction, it is immediate that if ;411 = ziy12 =
Tit1,3 =+ = Tit1,n—i = 0 for the (i + 1)th generated system,

then for the tth generated system we have that z;1 = z;3 =

- = Zin—i+1 = 0. Thus, any convergent feedback controller
about the origin for the (z 4+ 1)th generated system, will also
make the 7th generated system converge to the one-dimensional
manifold M; = {z € pretl = Bip—it1 =
0}. In particular, if the controller for (i + 1)th generated sys-
tem is chosen such that, in addition, it satisfies the property
lim; o #;2 = 0 then the same control law will drive the sth
generated system converge to the origin.

PXi1 =&z = -

3.2. The 3-dimensional System

The first step in the proposed derivation of the feedback
controller is to construct a static, state-feedback controller
for the (n — 2)th generated system in Eqgs. (16). From the
discussion in Section 1, this controller has to be necessar-
ily non-smooth. For notational convenience, let us redefine
Zi = Tn-2, (1 =1,2,3) and v; = up—2; (2 = 1,2). Then the
system in Eqgs. (16) can be rewritten as

Z.1 = U1 (17&)
Z.2 = V2 (17b)
Z.3 = 2102 (17C)

The following lemma will be useful in the sequel.

Lemma 3.1Consider the scalar, linear differential equation
N
?)Z—ay—i—ZhJe‘ﬁjt, a>0, ;>0 (18)
j=1

where hy, (j =1,2,...,N) are constants. Then, the solution
y(t) of Eq. (18) decays exponentially to zero. If, in addition,
Bi > a forj=1,2,..., N, then the solution decays exponen-
teally with rate of decay ov.

The proof of this lemma can be easily established by direct
integration of Eq. (18). The following theorem provides an
exponentially convergent controller for the system in Eqgs. (17).

Theorem 3.1Consider the system in Eqs. (17) and the feed-
back control

U1 = —kZ1

(19a)

—meQ—(m—l—l)ui (19b)

Z1

V2 =

with k > 0, m >0 and p > (m+ 1)k, and where

§ = z3 — 2129 (20)

+1
This control law s bounded along the trajectories of the sys-
tem and has the property that, for the closed-loop system,

Hmy oo (21 (1), 22(t), za(t)) = 0 with ezponential rate of con-
vergence, for all initial conditions such that z1(0) # 0.

Proof: The proof is quite straightforward. First, notice
that z; = z1(0) e_kt, and z; decreases exponentially with rate
of decay k. The variable s in Eq. (20) is the invariant manifold
for the system in Eq. (17) under the linear feedback

(21a)
(21b)

U1 = —kZ1

vo = —mkz

Using Eqgs. (19), the differential equation for s is

§ =29 — (viz2 + z1v2) = —ps (22)

m
+1
and s decreases exponentially with rate of decay p.

By definition, lim; .. s(¢) = 0 implies that im;_.o z3(t) =
0. The differential equation for zz can be written as follows

Zo=—mkz — (m+1)py(t) (23)

where the function v is an exponentially decaying function with
rate of decay p — k, since

S(t) — So 6—(M—k)t
Z1(t) Z10

(24)

From Lemma 3.1 and the fact that g > (m + 1)k, one has
lim; .o z2(t) = 0. Moreover, the rate of decay of z; is equal
to mk. Therefore the closed-loop trajectories of the system in
Eqgs. (17) with the control law in Eqs. (21) have the property
that lim; .o (z1(), 22(t), z3(t)) = 0.

The claim that the control law (19) is bounded follows im-
mediately by virtue of Eq. (24). ™



4. The Feedback Controller
The following theorem contains the main result of this pa-
per. It shows that the convergent control law in Egs. (19), can
also be used to drive the original system in Egs. (1) to the
origin.

Theorem 4.1 Consider the system in Eqgs. (1) (n > 3) and the
feedback controller

U1 = Up—2;1 (25a)
n—4
w o= - ; 2h I “;;l‘ff (25b)
where

Un—21 = —kx1 (26a)
Up—22 = —mkipo2—(m+1)p xnim (26b)

where k > 0, p > (m+ 1)k, m = 2""%, and where
8§ =1Tp_23 — mn—:— T Trn_22 T1 (27)
and Tp_22, tn23 and 42 (£ = 1,2,...,n — 3) are derived

through the recursive process described in Section 8. Then this
control law s bounded along the trajectories of the system and
has the property that im;_. o (z1(t), z2(t), ..., xn(t)) = 0 with
exponential rate of convergence, for all initial conditions such

that 1(0) # 0.

Proof: The proof of this theorem requires repeated use of
Lemma 3.1. We assume here that n > 4 since the case when
n = 3 has been addressed in Theorem 3.1.

From Theorem 3.1 we have that the control law in Egs. (26)
achieves lim¢_. o $rn—2;(t) = 0 for j = 1,2, 3. In addition, from
the same theorem we have that the function

(28)

"n=-—
T

decays exponentially with rate g — k.

The rest of the proof is shown by induction. To this end,
let us assume that for the (z + l)th order generated system we
have that lim; .o zi41,;(¢) =0, for j =1,2,3,...,n—1, which
implies that limy .o z;;(¢t) =0, for y =1,3,..., n—i+1. It has
been shown previously that with the control law in Eqgs. (26)
Zp—2,2 decays exponentially with rate 272 k and Tp—3,2 decays
exponentially with rate 2" ~* k. Assume now that the functions
Tive2 (L =mn—2—4n—3—1,...,1) decay exponentially,
each with corresponding rate 2i+z-1 k. We will show that also
lim; .o 2i,2(t) = 0 with rate A

The differential equation for z;» is given by

n—2—1
. i—1 i—14+¢ 4 Tite,2
T2 = -2 kmig — 2 k —_—
—(mA)p——e, i=1,2,...,n—3 (29

1

A straightforward calculation shows that (n > 4) 2"_3‘—1— 2 —
nt+i>2 foralli=1,2,...,n—3and 21— ¢ > 2°7 for
all:=2,3,...,n—3andf{=n—2—¢,n—3—1,...,1. Since
i > (2"7% 4 1) k, the functions

S

n—1—z’
1

(30)

Yn—1—: —

decay exponentially with rates p—(n—1—1) k > 2171 &, where
t=1,...,n — 3. Moreover, since by assumption ;4> decays
exponentially with rate 214! k and z; decays with rate &, one
has that the functions
Tite,2

p‘e: Z b
Ty

=n—-2—4n—-3—14,...,1 (31)
decay exponentially with rate (2“'[_1 -0k > 271k for i =
2,3,...,n—3and £ =1,...,n — 2 — 1. Use of Lemma 3.1
indicates that

lim z;2(t) =0,

t—o0

(32)

with rate of decay at least 2°~' k and the proof is complete.

The fact the the control law in Egs. (25) is bounded fol-
lows immediately from the fact that z1 reaches the origin only
asymptotically (not in finite time), and the fact that the the
functions pe(t) in Eq. (31) and 7.(t) in Eq. (30) are bounded.
]

The control law in Eqgs. (25) makes the constructed invari-
ant manifolds in each step attractive. It is clear that for this
procedure to work the attraction of the trajectories to the cor-
responding manifolds at each step should take place on differ-
ent times scales. For the sake of simplicity, this is achieved by
taking the gains of the control laws w;»> twice as the one in
the previous step. This can be relaxed at the expense of more
complicated control expressions.

Remark 4.1The control law in Eqgs. (25) will work as long as
£1(0) # 0. If initially z1(0) = 0 one can use any control law
such that z; becomes nonzero. One possible choice is to use
w1 = w10, Uz = 0, where w19 is some nonzero constant.

5. Numerical Example
Simulation results show that the recursive algorithm pro-
vides an effective way to drive an n-dimensional nonholonomic
control system in power form to the origin with exponential
rates of convergence. Figure 1 shows the trajectories of a 5-
dimensional system with initial state #(0) = (4,1,—1,—2,3)
subject to the feedback control in Egs. (25). The gains were
chosen as kK =1 and g = 6. Notice that the control law drives
the states to the origin at different time scales. Figure 2 shows
the time history of the logarithm of the euclidean norm of the
state. The linear slopes indicate the exponential rate of con-

vergence. The control effort is shown in Fig. 3.

6. Conclusions

We present a new technique for constructing exponen-
tially convergent controllers for nonholonomic systems in power
form. The construction of the proposed control laws is based
on a recursive algorithm which uses a series of invariant mani-
folds in order to construct a sequence of generated systems in
power form of reduced dimension. Using this process, one ends
up with a 3-dimensional system in power form. The proposed
control law for the n-dimensional system is the one that stabi-
lizes this 3-dimensional system by proper choice of the gains.
Finally, because of the equivalence between chained and power
form systems, the control laws proposed here can also be used
for nonholonomic systems in chained form as well.

References
[1] T. R. Kane, Dynamics: Theory and Applications. New
York: McGraw-Hill Inc., 1985.



Figure 1: Trajectories of closed-loop system.

Logarithm of ||x|[?

10~ I I I I I I I
0 1 2 3 4 5 6 7 8

Time

Figure 2: Logarithmic plot of ||z||* vs. time.

[2] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical
Introduction to Robotic Manipulation. Boca Raton, Florida:
CRC Press, 1994.

[3] H. Krishnan, M. Reyhanoglu, and H. McClamroch, “At-
titude stabilization of a rigid spacecraft using two control
torques: A nonlinear control approach based on the spacecraft
attitude dynamics,” Automatica, vol. 30, pp. 1023-1027, 1994.

[4] P. Tsiotras, M. Corless, and M. Longuski, “A novel ap-
proach for the attitude control of an axisymmetric spacecraft
subject to two control torques,” Automatica, vol. 31, no. 8,
pp. 1099-1112, 1995.

[5] R.W. Brockett, “Asymptotic stability and feedback sta-
bilization,” in Differential Geometric Control Theory (R. W.
Brockett, R. S. Millman, and H. J. Sussman, eds.), pp. 181—
208, Birkhauser, 1983.

[6] C. Canudas de Wit and O. J. Sgrdalen, “Examples of
piecewise smooth stabilization of driftless NI systems with less
inputs than states,” in Proc. IFAC Nonlinear Control Systems
Design Symposium, 1992. Bordeaux, France.

[7] H. Khennouf and C. Canudas de Wit, “On the construc-

tion of stabilizing discontinuous controllers for nonholonomic

Control Effort

Figure 3: Control history.

systems,” in TFAC Nonlinear Control Systems Design Sympo-
stum, pp. 747-752, 1995. Tahoe City, CA.

[8] A. Astolfi, “Discontinuous control of nonholonomic sys-
tems,” Systems and Control Letters, vol. 27, pp. 37-45, 1996.

[9] C. Samson, “Velocity and torque feedback control of a
nonholonomic cart,” in Int. Workshop on Adaptive and Nonlin-
ear Control: Issues in Robotics, pp. 125-151, 1990. Grenoble,
France.

[10] J. M. Coron, “Global asymptotic stabilization for con-
trollable systems without drift,” Math. Cont. Signals and Syst.,
vol. 5, pp. 295-312, 1992.

[11] R. Murray, “Control of nonholonomic systems us-
ing chained form,” Fields Institute Communications, vol. 1,
pp. 219-245, 1993.

[12] A. Teel, R. Murray, and G. Walsh, “Nonholonomic
control systems: From steering to stabilization with sinu-
soids,” in Proc. 81st IEFE Conference on Decision and Con-
trol, pp. 1603-1609, 1992.

[13] J. P. Pomet, “Explicit design of time-varying stabilizing
control laws for a class of controllable systems without drift,”
Systems and Control Letters, vol. 18, pp. 147-158, 1992.

[14] 1. Kolmanovsky and H. McClamroch, “Hybrid feedback
laws for a class of cascade nonlinear control systems,” IEFFE
Transactions on Automatic Control, vol. 41, pp. 1271-1282,
1996.

[15] R. T. M’Closkey and R. M. Murray, “Exponential sta-
bilization of driftless nonlinear control systems using homoge-
neous feedback,” in Proceedings, 33rd Conference on Decision
and Control, pp. 1317-1322, 1994. Lake Buena Vista, FL.

[16] P. Morin and C. Samson, “Time-varying exponential
stabilization of the attitude of a rigid spacecraft with two con-
trols,” in Proceedings of the 34th Conference on Decision and
Control, pp. 3988-3993, 1995. New Orleans, LA.

[17] O. J. Sgrdalen and O. Egeland, “Exponential stabiliza-
tion of nonholonomic chained systems,” IFEF Transactions on
Automatic Control, vol. 40, no. 1, pp. 35-49, 1995.

[18] I. Kolmanovsky and H. McClamroch, “Developments in
nonholonomic control problems,” IFEFE Control Systems Mag-
azine, vol. 15, no. 6, pp. 20-36, 1995.

[19] W. M. Boothby, An Introduction to Differentiable Man-
ifolds and Riemannian Geometry. San Diego, California: Aca-
demic Press, 2nd ed., 1986.

”



