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Abstract

We present an approach for constructing optimal feedback
control laws for optimal regulation of a rotating rigid space-
craft. We employ the inverse optimal control approach which
circumvents the task of solving a Hamilton-Jacobi equation
and results in a controller optimal with respect to a meaning-
ful cost functional. The design reported in the paper is the first
optimal control design for attitude regulation of the complete,
nonlinear system, which includes a penalty on the angular ve-
locity, orientation and the control torque.

1. Introduction

Optimal control of rigid bodies has a long history stem-
ming from interest in the control of rigid spacecraft and aircraft
[1, 2, 3]. The main thrust of this research has been directed,
however, towards the time-optimal and fuel-optimal control
problems [4, 5, 6]. The optimal regulation problem over a fi-
nite or infinite horizon has been treated in the past mainly for
the angular velocity subsystem and for special quadratic costs
[7, 8, 9]. The case of general quadratic costs has also been
addressed in [10]. Optimal control for the complete attitude
problem, i.e.,; including the orientation equations is more dif-
ficult and has been addressed in terms of trajectory planning
[11, 12], or in semi-feedback form [13]. The main obstruction in
constructing feedback control laws in this case stems from the
difficulty in solving the Hamilton-Jacobi equation, especially
when the cost includes a penalty term on the control effort.
In [14] the authors obtain closed-form optimal solutions for
special cases of quadratic costs without penalty on the control
effort. Suboptimal results can be obtained by minimizing an
upper bound of the cost. Alternatively, one can penalize only
the high-gain portion of the control input [15].

In this paper we follow an alternative approach in order
to derive optimal feedback control laws for the complete rigid
body system. We employ the inverse optimal control approach
which circumvents the task of solving a Hamilton-Jacobi equa-
tion and results in a controller optimal with respect to a mean-
ingful cost functional. This approach has been long dormant
in the area of nonlinear control and was recently revived in [16]
to develop a methodology for design of robust nonlinear con-
trollers. The inverse optimality approach requires the knowl-
edge of a control Lyapunov function and a stabilizing con-
trol law of a particular form. For the spacecraft problem, we
construct them both using the method of integrator backstep-
ping [17]. The penalty on the control depends on the current

*The work of the first author was supported in part by the National
Science Foundation under Grant ECS-9624386, in part by the Air Force
Office of Scientific Research under Grant F496209610223, and in part
by a grant from the Minta Martin Foundation. The work of the second
author was supported by the National Science Foundation under Grant
CMS-9624188.

Panagiotis Tsiotras

Dept. of Mechanical, Aerospace and Nuclear Engineering

University of Virginia, Charlottesville, VA 22903
tsiotras@virginia.edu

state and decreases for states away from the origin. This allows
for the necessary increased control action for initial conditions
away from the equilibrium, while for states close to the origin
the controller reduces to an LQR-type of control law.

2. Inverse Optimal Control Approach

We consider nonlinear systems affine in the control variable
&= f(z) +g(z)u (1)

where f:IR" — IR™ and g : IR” — IR™*™ are smooth, vector-
and matrix-valued functions respectively, with f(0) = 0. More-
over, z € IR" and u € IR™ denote the state and control vectors,
respectively. Let us now assume that the static, state-feedback
control law

u=k(x):= R A@vnﬂﬁsva\eﬂ (2)

where R : IR™ — IR™™" is a positive definite matrix-valued
function (ie., R(z) = RT(z) > 0 for all # € IR™), stabilizes
the system in Eq. (1) with respect to the Lyapunov function
V(z). Here V, denotes the gradient of V' (row vector).

Since k(z) is an asymptotically stabilizing control law with
corresponding (strict) Lyapunov function V', the following in-
equality holds along trajectories of the closed-loop system

dvV

= Ve (f(zx) + g(z)r(z)) < 0, Yz #£0 (3)

The next proposition shows that the control law in Eq. (2)
is closely related to an optimal control for the system in Eq. (1)
with respect to a specific cost.

Proposition 2.1Consider the system in Eq. (1) and the sta-
bilizing control law k(z) in Eq. (2). Then the control law

u=r"(z):= Br(z), (B>2) (4)

18 optimal with respect to the cost

J u\ {¢(z) + «" R(x)u} dt (5)
where

Uz) = —28Vi(f(x)+g(x)r(z))

n_Jm_QwI wv Ve ,Q?&WIHASVQHASV <HH Am.v

Notice that because of Eq. (3) we have £(z) > 0 for all z # 0
and the performance index in Eq. (6) represents a meaningful
cost, in the sense that it includes a positive penalty on the state
and a positive penalty on the control for each z. In fact, the
function r(z, u) = u” R(x)u is continuous, nonnegative, convex



in u and has a unique global minimum at « = 0 for each fixed
z € IR"™.

Proof:[of Proposition 2.1] The proof of the proposition can
be established very easily by showing that the positive definite
function W(z) := 26V (z) is a solution to the corresponding
Hamilton-Jacobi-Bellman equation of the optimization prob-
lem in Eqgs. (1)-(6), i.e., W(z) solves the equation

0 mew ﬁmﬁsv._'\:ﬂmﬁsv@._vﬂ\e Qﬁsv._',eﬁsv\:i (7)
and the optimal control is given by
w'(e) = =R (z) g" (2) Wa (8)

Remark 2.1The previous proposition provides a general so-
lution to the inverse optimal control problem for control-affine
nonlinear systems. In particular, if a stabilizing control law,
along with the associated Lyapunov function, is known then a
scalar multiple of this control law is optimal with respect to
the cost in Eq. (5). Notice that this cost depends on the Lya-
punov function V' of the original stabilizing feedback as well
as on the particular system dynamics. This is understandable,
since by requiring closed-form solutions to a nonlinear opti-
mal feedback problem it is sensible to choose costs which are
compliant with the system dynamics. In other words, the cost
should reflect somehow, and take into account, the form of the
nonlinearity of the system. This restricts of course the choice
of performance indices. On the other hand, one avoids solving
the often formidable Hamilton-Jacobi equation.

Remark 2.2The assumption of a strict Lyapunov function is
not restrictive. In fact, if Eq. (3) is not a strict inequality then
£(z) is only positive semi-definite. Proposition 2.1 then holds
by imposing an observability or a detectability assumption on

the pair of vector fields (f, ¢).

The following corollary follows immediately from Proposi-
tion 2.1.

Corollary 2.1 Consider the control-affine nonlinear system in
Eq. (1) and assume that the control law in Eq. (2) is globally
asymptotically stabilizing, with V(z) the corresponding Lya-
punov function and R(z) some positive definite, matriz-valued
function. Then the control law

w' =2 WL?&QH?i\Hﬂ (9)

menemizes the performance index
.NH\ {4V, f(z)+2 Ve QA@VWIH (z) Qﬂﬁsva\eﬂn_'\:ﬂmﬁsv@w dt
0

3. The Rigid Spacecraft

In this section we use the inverse optimal results of Proposi-
tion 2.1 in order to derive control laws which are optimal with
respect to a cost which includes a penalty on the control input
as well as the angular position and velocity of a rigid rotating
spacecraft. The complete attitude motion of a rigid spacecraft
can be described by the state equations [15]

W o= JTSW)Jw+ T

po= H(pw

where w € IR? is the angular velocity vector in a body-
fixed frame, p € IR? is the Cayley-Rodrigues parameters vec-
tor describing the body orientation, u € IR? is the acting
control torque, and J is the (positive definite) inertia ma-
trix. The symbol S(-) denotes a 3 x 3 skew-symmetric matrix
such that S(v)w = —v x w, and the matrix-valued function
H : IR? — IR**? denotes the kinematics Jacobian matrix for
the Cayley-Rodrigues parameters, given by

H(p):= (I~ (o) + pr") (11)
where I denotes the 3 x 3 identity matrix. In the sequel, || - ||
denotes the euclidean norm, i.e., ||z|* = 7=, for ¢ € IR™.

Observe that the system in Eqs. (10) is in cascade intercon-
nection, that is, the kinematics subsystem (10b) is controlled
only indirectly, through the angular velocity vector w. Stabi-
lizing control laws for systems in this hierarchical form can be
efficiently designed using the method of backstepping[17]. Ac-
cording to this approach, one thinks of w as the virtual control
in Eq. (10b) and designs a control law, say wa(p), which sta-
bilizes this system. Subsequently, one designs the actual con-
trol input « so as to stabilize the system in Eq. (10a) without
destabilizing the system in Eq. (10b) by forcing, for example,
w — wq. The main benefits of this methodology is that it is
flexible, and lends itself to a systematic construction of sta-
bilizing control laws along with the corresponding Lyapunov
functions.

3.1. Backstepping

The first step for applying the results of Proposition 2.1
is to construct a control-Lyapunov function for the system
in Eq. (10). Here we use backstepping in order to derive a
control-Lyapunov function, along with a stabilizing controller
of a particular form for the system in Eq. (10).

Consider the kinematics subsystem in Eq. (10b) with w pro-
moted to a control input and let the control law

ki1 >0

(12)

wdq = |\0H 12
With this control law the closed-loop system becomes

p=—kiHt(p)p (13)

Proposition 3.1The system in Eq. (13) is globally exponen-
tially stable.

Proof: Consider the following Lyapunov function

1
Vi(p) = m__\g__M

(14)

The derivative of ¥} along the trajectories of Eq. (13) is given
by

Vo= =21+ P ol < -k Vi <0, Yp#0

(15)

Global exponential stability with rate of decay ki1/2 follows.
]
Consider now the error variable
r=w—wag=w+kip (16)

The differential equation for the kinematics is written as

p=—kH(p)p+ H(p)z (17)



Notice that for z = 0 the system in Eq. (17) is globally expo-
nentially stable by virtue of Proposition 3.1. The differential
equation for z is

(J7'S(w)J + ki H(p)) =
- k (JT'S(w) T+ ki H(p)) p+ T

(18)

We want to find « = u(p, z) such that the system of Eqgs. (17)-
(18) is globally asymptotically stable. To this end, consider
the following candidate Lyapunov function

1 k2 1
Vip,2) = KVilp) + 3l1=IF = el + =07 (19)

Taking the derivative of V' along the trajectories of Eqgs. (17)-
(18) one obtains

Ky
2
+NHMIHMAEVMN + 7 A

Vo= L+ Nlol) lpll* = k12" T S(w) T p
k _
%Qf%ﬁi.u fgv (20)

and upon completion of squares,

_K
1

_k
1

. k3 2 _
Vo= (2l llell® = = p= 1z IS W) e
1

2

7 Q + MIKESELV z
427 TAIH (S1+00") = 207 ()12 5(w)T 7 -

2 k1
P A (21)

With the choice of the feedback control law

u=—J :\s + M\:v I+ wl{% - MIKL@?EMEEEL_ z
(22)
where k2 > 0, Eq. (21) yields
|mﬁ +2[lpl*) lloll* — ki p— Wum?iLN M
4 4 k2
_k

4

a.\”

2 2
— ke |||

(23)

7 Q + MIKESELV N

and the control law in Eq. (22) Hmwn_m.wm the closed-loop system
globally asymptotically stable since V' (p, z) < 0 for all (p, z) #

(0,0).

3.2. Optimal Control Law

The method of backstepping has been used in the previous
section to construct an asymptotically stabilizing control for
the system in Eqgs. (10) along with the corresponding Lyapunov
function. In order to use the results of Proposition 2.1 we need
a stabilizing control law of the form in Eq. (2). Noticing that
with V as in Eq. (19) one has Vog(z) =V, J=' = 2T 77 one
can rewrite the control law in Eq. (22) as

u= IWIHCPEYNIH z (24)

_ 3 k
R(pw) = J! :\s._.MFVN._.WEQH

- NMLE&EM@?EL_ T o)

k1

Note that, since S(w) = —S(w)?T and J = JT, we have
R(p,w) > 0, Vp,w € IR™. From Corollary 2.1 we finally have
that the control law

Wt =—J :w\s + w\:v I+kipp" — WMLEEEM@?EL z
1

minimizes the cost functional

J = \gSpav +u” R(p,w)u} dt

ki (14 2]|pl1*)llell” + 4kz|w + k1 p||®

2

Up,w)

2 _
+k7 p— 1z lSw) Yw + kip)
1

2

+k1

Q + MIKM?ELV w+ko)| @8
and R(p,w) as in Eq. (25). The performance index in Eq. (27)
represents a meaningful cost since £(p,w) > 0 and R(p,w) >0
for all (p,w) # (0,0), therefore it penalizes both the states p
and w, as well as the control effort . As p and w increase, the
penalty on the control decreases. This i1s a desirable feature
of the optimal control law, since it implies more aggressive
control action far away from the equilibrium. Indeed, as the
system state starts deviating from the intended operating point
the controller allows for increasingly corrective action. At the
same time, for p and w small we have that

Up,w) ~ 2k |Ipll” + (4k2 + k1) [lw + kapl* + O(|l(p, w)]I*)

Ripw) ~ 77 [kt 2k0a] T 0 4 0P

80, close to the origin, the control law reduces to an LQR-type
linear control law. The control law in this case minimizes the
LQR cost

+ \:HWQW dt

7= \ W | ¢ (20)

p

4k + k1 ki(4ks + k1) R A 4 v g2
ki(dks + k1)  kI(3ki +4k2) |7 T \dks + 3k
The previous equations be used as a guideline for choosing the

positive definite matrices @ and R such that LQR-performance
is guaranteed close to the equilibrium point.

@”

Remark 3.1It is important to realize that the optimal con-
trol law in Eq. (26) avoids the cancellation of the nonlineari-
ties. Notice, for example, that from Eq. (20) one can globally
asymptotically stabilize the system by choosing the control law

QHI\QMNIWMANI_'EEHVNIMAEVME (30)

which renders
ki
M <AE“NVWAD“DV
There are no obvious optimality characteristics associated with
this control law. In fact, as was pointed out in [18] controllers
which cancel nonlinearities are, in general, nonoptimal since
the nonlinearity may be actually beneficial in meeting the sta-
bilization and/or performance objectives.

Vo= =1+ lolP)llell® — kallz]* < 0,

An undesirable feature of the optimal control law in Eq. (26)
is that it depends on the moment of inertia matrix J, which
may not be always accurately known. The robustness proper-
ties of the optimal control law will be addressed in the future.



3.3. The symmetric case
When the rigid body is symmetric, its inertia matrix is a
multiple of the identity matrix and S(w)Jw = 0 for all w € IR?.
In this case the optimal control law simplifies to
u =T [(2ke + k) +kipp"] 2 (31)

which minimizes the cost in Eq. (5) where

2K (L Il ol + 4 ka1

= k1 LT A
(k2 + MVN + MPQ J

Uw, p)

WAE“EV =

This control law reduces to an LQR-type feedback control law
close to the origin, with

4k, 4k ko

2
Q= 4hiks 2k3 + 4k k2 | muA

—2
2ky + \Sv 4

We note that the symmetric case has been previously addressed
by Wie et al. [19], where an Euler parameter description for
the kinematics was used.

4. Numerical Example

Numerical simulations were performed to establish the va-
lidity of the theory. We assume a rigid spacecraft with inertia
matrix J = diag(10,15,20) kgm. A rest-to-rest maneuver is
considered, thus w(0) = 0. First, we consider the kinemat-
ics subsystem in Eq. (10b) with w regarded as the control in-
put. Let the initial conditions p(0) = (1.4735,0.6115,2.5521)
in terms of the Cayley-Rodrigues parameters. The trajectories
of the system with the control law in Eq. (12) with k; = 1 are
shown in Figs. (1) and (2). The exponential stability of the
closed-loop system is evident from these figures. At this step
the choice of k1 is basically dictated by the required speed for
the completion of the rest-to-rest maneuver.

For the stabilization of the complete system we use the con-
trol law in Eq. (26). The state trajectories for different values
of the gain k2 are depicted in Figs. (3) and (4). The optimal
trajectories have a very uniform behavior which is essentially
independent of the value of k2 and they follow very closely the
corresponding trajectories for the kinematics subsystem. The
control action varies a great deal, however, with k2. The initial
control action consists, essentially, in making w — —kqp. This
is clearly shown in Fig. (3).

Finally, Fig. (6) shows the time history of the Frobenious
norm of the control penalty matrix R(w,p). The control
penalty is decreased rapidly at the initial portion of the tra-
jectory when increased control action is necessary in order to
“match” w with wq within a short period of time.

5. Conclusions

Due to the difficulty in obtaining closed-form solutions to
the Hamilton-Jacobi-Bellman equation, the direct optimal con-
trol problem for nonlinear systems remains open. However, the
knowledge of a control Lyapunov function allows us to solve the
tnverse optimal control problem, i.e., find a controller which is
optimal with respect to a meaningful cost. The inverse optimal
stabilization design for a rigid spacecraft in this paper is, to
the authors’ knowledge, the first optimal feedback control law
that minimizes a cost for the general — nonsymmetric case —
that incorporates penalty on both the state (angular velocity
and orientation) and the control effort (torque).
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Figure 1: Orientation parameters for the kinematics.
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Figure 2: Angular velocity for the kinematics.
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