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Abstract

In this paper, we use the theory of Lo disturbance at-
tenuation for linear ('Hoo) and nonlinear systems to
obtain solutions to the Nonlinear Benchmark Problem
(NLBP) proposed in the companion paper by Bupp et.
al. [2]. By considering a series expansion solution to the
Hamilton-Jacobi-Isaacs Equation associated with the
nonlinear disturbance attenuation problem, we obtain
a series expansion solution for a nonlinear controller.
Numerical simulations compare the performance of the
third order approximation of the nonlinear controller
with its first order approximation gwhich is the same
as a linear H., controller obtained {from the linearized
problem.)

1 Introduction

The control of nonlinear systems has received much
attention in recent years and many nonlinear control
design methodologies have been developed. It is im-
portant to determine the advantages and limitations
of the different nonlinear control design methodologies.
The Nonlinear Benchmark Problem (NLBP) proposed
by Bupp et. al. [2] is an initial attempt to achieve this
objective.

The NLBP involves a cart of mass M whose mass
center 1s constrained to move along a straight horizontal
line; see Figure 1. Attached to the cart is a “proof
body” actuator of mass m and moment of inertia [.
Relative to the cart, the proof body rotates about a
vertical line passing through the cart mass center. The
nonlinearity of the problem comes from the interaction
between the translational motion of the cart and the
rotational motion of the eccentric proof mass.
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Figure 1: Nonlinear Benchmark Problem

After suitable normalization [2], the equations of mo-
tion for this nonlinear system are

é—l—f 5(é2sin9—éc059)+w (1a)
§ = —5éc059—|—u (1b)
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where ¢ is the (nondimensionalized) translational po-
sition of the cart and ¢ is the angular position of the
rotational proof body. In equations (1), w and u are
the (nondimensionalized) exogenous disturbance and
the control torque, respectively. The coupling between
the translational and rotational motions is captured by
the parameter e which is defined by

€= me 2
\/(I+me2)(M+m) @

where e is eccentricity of the rotor. Clearly, 0 < e < 1
and e = 0 if and only if ¢ = 0; in this case the trans-
lational and rotational motions decouple and equations
(1) reduce to

E+¢ = w (3a)
§ = wu (3b)

For this latter system, the effect of w is completely de-
coupled from the effect of u. Also, to control transla-
tional motion using u, the eccentricity must be nonzero.

Letting & := [z1, 22, 23, 24]7 = [£,£,6,6]7, the sys-
tem (1) can be written compactly in state-space form
as

T2 0
2 .
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T _ 1—e?cos? z3 + 1—e2cos? z3 u
T4 0
5 2 1
e cos wg(xy —ex] sin x3) L1
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1—e2cos?z
+ TR (4)
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2 Problem Definition

In this paper, we propose the following control design
problem to address the qualitative design guidelines
given in [2]:

Disturbance Attenuation Problem (DAP):
For the system (4) find a memoryless state-
feedback controller

u=k(x) (5)
such that the following conditions hold:
1. When w(t) =0 for all ¢ > 0,
tli_)ngo z(t)=0

for all initial states (0) in some neigh-
borhood D of the origin.



2. Let z denote a performance output de-

fined by
-] e

where the matrix C is a design pa-
rameter. Given any disturbance w €
L2(0,00) and zero initial state (z(0) =
0), the closed loop system satisfies

/ {1117 = 2 llw®)]I*} dt < 0 (7)

where v 1s a design parameter.

Note that the second requirement implies that the
L2-gain of the closed loop system from the disturbance
input w to the performance output z is less than or
equal to 7.

The Disturbance Attenuation Problem has been
treated in [1, 3, 5]. In these references it has been shown
that, under mild conditions, the DAP can be solved,
provided one has a positive definite solution to the so-
called Hamilton-Jacobi-Isaacs Equation. The original
idea behind this approach was to formulate the DAP as
a differential game where u and w are the two opposing
players. The next section reviews the basic results of
[3, 5] which will be used in the sequel.

3 The Hamilton-Jacobi-Isaacs Equa-
tion (HJIE)

System (4), along with its performance output, is de-

scribed by

& = F(z)+Gi(z)u+ Go(z)w (8a)
;= [C;f] (8b)

where the functions F,G1, 2 are obtained from (4).
Also
F(0)y=0 (9)

and we assume that the system

& = F(z)
= Cz
is observable in the sense that the zero solution is the

only solution for which z(t) is zero for all ¢.

One can readily show [3, 5, 6] that if there is a pos-
itive definite function V which satisfies the following
Hamilton-Jacobi-Isaacs Equation

1
DV(2)F(2) = £ DV (2)( G (2)GY (2) -
7_2G2(x)G§(x) )DVT(x) +TcTcs =0 (10)
where DV is the derivative of V, i.e,

pv=[ & Z ... Z]

dxq dxg [ek 2

then the feedback controller
ux(z) = —%Gf(x)DVT(x) (11)
yields a closed loop system with the following property:

For every initial condition z(0) = zo and for every dis-
turbance input w one has

/OO{IIZ(t)||2—72IIwII2}dt < Viwo)  (12)

Also, the “worst case disturbance” is given by
wa(z) = ;?Gg(x)DVT(x) (13)

Using V' as a Lyapunov function one can show that the
undisturbed (w = 0) closed loop system correspond-
ing to controller (11) is globally asymptotically stable.
Hence, a solution to the DAP is given by controller (11).

The main stumbling block in using the above result
is that only rarely is one able to compute a function V'
satisfying (10) in closed-form. So, instead of insisting
on closed form solutions, we solve (10) in an iterative
fashion based on series expansions. This is the method-
ology proposed in [4, 7] for the solution of Hamilton-
Jacobi equations arising in optimal control problems.
We demonstrate here that the same procedure can be
applied to nonlinear L£; disturbance attenuation prob-
lems, provided that the linearized version of the prob-
lem has a solution.

First we rewrite system (8) in the form

& = F(z)+d(z)v (14a)
z = [C;f] (14b)

Letting
Q(z) = 7T,
HIIE (10) can be rewritten as
DVF — iDVGR_lGTDVT +Q=0 (17)

and letting

vy = | 0
* i= W

v = —2RT'GTDVT (18)

we have

4 Problem Solution

4.1 Linearized Problem

In the next section, it will be shown that the first term
in the series expansion for the controller (11) is the
solution to the corresponding linearized problem. Thus,
we first consider the linearized problem, which amounts
to solving a linear state-feedback Ho, problem.

The linearization of system (14) about « = 0 is given

by

¥ = Az + Bv (19a)
z = [C;f] (19b)

with
A=DF(0), B=G(0)

Considering a quadratic form
V(z)=a" Pz

as a candidate solution to the HJIE associated with the
linear DAP we obtain

e [PA+ ATP—-PBR'B"P+C"Clz =0



This is satisfied for all z iff the matrix P solves the
following Algebraic Riccati Equation (ARE):

PA+ATP—PBR'B'P+CTC =0 (20)

In this case, v4 is given by

ve(z) = —R7'BT Py (21)
Also, the corresponding controller u, is a suboptimal
(in terms of the achievable Ho, norm from w to z) Hu
state feedback controller.

According to standard linear Ho theory, if the pair
(C, A) is observable and the pair (A, By) (B1 = G1(0))
is stabilizable, a necessary and sufficient condition for
the linear system (19) to have L;-gain less than v is
that the above Algebraic Riccati Equation (ARE) has
a positive definite solution P with the matrix

Ay:=A—BRT'B'P (22)

Hurwitz.

4.2 Nonlinear Problem
First note that the HJIE (17) can be written as

DVF —olRo.4+Q = 0 (23a)
v +LRT'GTDVT = 0 (23b)
Suppose
F o= FU4pPlL Pl
¢ = 4y

where FIFL Gl are homogeneous functions of order k.
A homogeneous function of order & in n scalar variables
Z1,%2,...,%yn 18 a linear combination of

N;?::(n—i_]]:_l)

terms of the form z'z;? ... ,", where ¢; is a nonnega-
tive integer for y = 1,...,n and 41 +22+- - -+, = k. The
vector whose elements consist of these terms is denoted
by z!l; for example, with four scalar variables one has

2 = [1, T2, 23, z4]T

Therefore, a scalar homogeneous function z/J[k] of order
k can be written as

() = walh] (24)

where ¥ € IRY*¥%'. Note that
FOl() = Az, GPNz)=B

We consider a series expansion for V' of the form

(25)

where VI is a homogeneous function of order k. Sub-
stituting (25) in equation (23b) one obtains that

v=vP Pl oyt

v = ol ol 4ol 4 (26)
G

where v, is the homogeneous function of order k given
by

k—1
,ULk] — —%R_l Z GUIT pyle+1-41T

=0

(27)

2 2 2 2 29T
P = [1°,T172, 72", $1T3, ToT3, T3°, T1T4, T2Ta, TaTa, Ta" ]

Substitution of the expansions in (25) and (26) into
(23a) and equating terms of order m > 2 to zero yields

m—2 m—1

Z pyltm—FH ple+1l _ Z ULm—k] TRULk] + Q[m] -0

k=0 k=1
(28)
For m = 2 equation (28) simplifies to

pYEIpll _ Mg,y ol
Since F[l](x) = Az,

oM = LR BT pYPIT
and

we obtain

1
DV (2) Az~ DV (5) BR™ BT DV (2) 427 CTCr = 0

which is the HJIE for the linearized problem. Hence
V[2](x) =3 Pg

where PT = P > 0 solves the ARE with A, := A —
BR™'BT P Hurwitz; also,

WW(e)=Ke, K=-R'B'P

(29)
Consider now any m > 3 and rewrite (28) as

m—2 m—2

Z DV[m—k]F[k+1]_ZULm—1] TRUE]_Z ULm_k] TR’ULk] -0

k=0 k=2

Note that the last term in the above expression does

not depend on V™. Using
m—2
m—1]T m—k k —1
"I = — 1N pyInTHGtip
k=0
and defining
fi=F + Gol! (30)
the first two terms can be written as
m—2 m—2
Z pyltm—F plk+1] + Z DV[m_k]G[k]vE]
k=0 k=0
m—2
— Z Dv[m—k]f[k+1]
k=0
m—2
— Dv[m]f[l] + Z Dv[m—k]f[k+1]
k=1
where
M) = A (31)

For m > 3, equation (28) can now be written as

m—2 m—2

Dv[m]f[l] - _ Z Dv[m—k]f[k+1] + Z ,ULm—k] TR’ULk]

k=1 k=2
(32)
Equation (32) can be solved for V1™l as follows. Con-
sider an expression for V[m](x) of the form V[m](x) =
me[m], with V,, € IR *Nm | Substitute this expression



for VU™ () into (32) and solve the resulting linear sys-
tem of N]. equations for the unknown N} elements of
the coeflicient vector Vi,.

Thus, starting with V[2](x) = 2T Pg and UE](%) =
Kz one can use equations g32) and (27) to compute
consecutively the sequence of terms

CINCRVOINO I (33)

and construct iteratively the solution V' of HJIE and
the associated v.. Notice that this procedure generates
not only the feedback control strategy u«(z) defined in
(11) for disturbance attenuation, but also the worst case
disturbance w,(z) given in (13).

5 The Nonlinear Benchmark Prob-
lem

For the performance output z, we chose ¢ = /0.1 1
where I is the 4 x 4 identity matrix. We also chose the
eccentricity parameter e = 0.5.

In order to apply the proposed methodology to the
NLBP, we first expand the F' and G functions cor-
responding to the right hand side of (4) in a multi-
variable series expansion about z = 0. Noting that
1—e?cos? x5 # 0, these expansions can be readily com-
puted as

T2

4 2. 2 4.2
—3%1+ 34 T3+ 5T1T3 + -

F(z) = (34)
Ty
%xl - %1}4%3 - %xlxg + -
0 0
-5+ gei + §—svh+
G(z) =
0 0
§—5vh+ —2+ 5oi+

5.1 Linear terms

The linearized system is given by (19) with

0 1.0 0 0 0

4 2 4

—£ 0 0 0 —2 4

A= 3 ’ B = 3 3
0 0 0 1 0 0

2 4 2

s 000 R

36
Using this data one can show that the linearized pEob2
lem has a solution if and only if ¥ > v« & 2.2. Choosing
v = 3 one can solve (20) for P > 0 and compute the
linear term of v4(z) as

0.3568z1 4 0.0409x2 — 0.3184x3 — 0.9275%4

UE](%) =
—0.001521 + 0.1782x2 4+ 0.0126x3 + 0.0330z4

where the first row is the control u[*l](x) and the second

row the disturbance le](x).

5.2 Higher order terms

The higher order terms are calculated using the pro-
cedure described in Section 4.2. The calculations are
simplified for the NLBP because, as it is evident from
(34) and (35),

k=1,2,...
(37)

FP gy =0,  GP* @) =o,

As a result, V[S](x) = 0 and UE](x) = 0. The first
nonzero higher order term for the controller is third
order and can be computed from

WP o)=—LR™" (B"DVI T (2) + GP1" () DV (1))

DV () Ao=—DVP (2) (FF(2) + GP(z)ol)(2))

Specifically, both control (first row) and disturbance
(second row) are given by

40.0471z4%23 — 0.0018z1 232 + 0.4305z4 %21
—0.0341z4° + 0.711454 2201 — 0.3779x4 722
+0.2721x403751 + 0.208004 0372 — 0.398075375?
40.3076z35251 — 0.1482z372% + 8 - 107% 25
+0.3239z2%21 + 0.2585z3%22 — 0.69301z4 23
+0.0217x422 — 0.111624%2, — 0.43100z2 22
i3] —0.1937z2° 4+ 0.13062,°

vp(z) =
40.0268z4%x3 — 0.0137z1 232 — 0.032524 %21
40.023724% — 0.0678z4 5251 + 0.18605, 222
—0.0231$4$3$1 —|— 0.1432$4$3$2 —|— 0.0203$3$12
—0.0081z3x221 + 0.098755222 — 0.0002z5°
—0.035422x1 + 0.049925% x5 + 0.04505 4212
—0.0213z423% 4+ 0.1288x4% 22 + 0.0713224°
40.0949z,% — 0.0052%,°

In fact, because of (37), one can show that all the non-
trivial terms of the series expansion for v.(z) are odd,

that is, ka](x) =0fork=1,2,3,....

6 Simulations

Here, we compare the closed loop system with the lin-

ear controller u[*l] with the closed loop system with the

nonlinear controller u[*l] + u[*g]. All the symbolic cal-
culations for the gains of the nonlinear controller were
performed using MAPLE. The numerical simulations
were performed using MATLAB.

Two simulations were performed. The first simu-
lation compared the two controllers on the issue of
asymptotic stability. The results are shown in Fig-
ures 2-3 which contain the “phase portraits” of the vari-
ables ¢ and #. The solid lines denote the response due
to the nonlinear controller, and the dashed lines de-
note the response due to the linear controller. The
initial conditions for this simulation were chosen as
2(0) = [5,5,-2,2]F. ;From this simulation, it seems
that the region of attraction due to the nonlinear con-
troller 1s larger than that due to the linear controller:
for the chosen initial state, the state trajectory resulting
from nonlinear control tends asymptotically to the ori-
gin, whereas the trajectory resulting from linear control
tends to a limit cycle. The control histories are shown
in Figure 4.

The second simulation compares the disturbance at-
tenuation properties of the two controllers. Since the
computation of the Ls-gain of a nonlinear system is
not an easy task, we carried out the following proce-
dure. We simulated the nonlinear closed loop system,
with both the linear and the nonlinear controller, with
zero initial state and with a disturbance w that approx-
imates in some sense the worst possible disturbance for
this problem. More specifically, we took the distur-
bance w = w, where w is the solution to the problem
of maximizing

/m{llz(t)llz) ()P di

subject to the linearized closed loop dynamics (which is
the same for both controllers) and a given initial con-
dition.




A measure of the disturbance attenuation level, at Dashed: Linear — Sold: Nonlinear
any time 7' > 0, of the closed loop system is given by ‘ ‘ ‘ ‘ ‘ ‘

[T dt

ratio(1) := —2————— (38) af 1
7 [ llw)]P at I |
Note that if the £5-gain of a nonlinear closed loop sys- 50l ]
tem is less than or equal to v, then ratio(T) < 1 for all b
T > 0. ol |
Simulations were performed using several initial con-
ditions to generate the “worst disturbance” w. In all 4 1
cases, the nonlinear controller outperformed the linear
one although only by a small margin. Figure 5 contains N 1
results when the disturbance @ is generated with ini- D e — - ; : : .
tial condition #(0) = [5,5, —2,2]T. In this case, it turns i
out that limr_ o ratio(T) = 0.74 for the linear con- ) )
troller, while lim7_. ratio(T) = 0.65 for the nonlinear Figure 2: Phase Portrait of £
COHtI‘OHeI‘. ‘ ‘ Dashe‘d: Linear T Solid: No‘nlinear ‘

7 Conclusion

We have applied the theory of £, disturbance attenua- 1k
tion for nonlinear systems to the recently proposed non-
linear benchmark problem. A nonlinear state-feedback
controller is computed recursively by considering a se-
ries expansion solution to the associated Hamilton-
Jacobi-Isaacs Equation. The procedure is straightfor- -2f
ward and can be readily automated in a computer. Nu-
merical simulations indicate that the performance of the
third order approximation of the nonlinear controller af
provides an improvement over its first order approxi-
mation (Which 1s the same as a linear H., controller % 3 2 = 0 1 2 3 3
obtained from the linearized problem). This improve- e

ment is however not very significant, thus indicating

that higher order terms may be necessary to extend

the region of attraction of the closed-loop system, or to 5
increase the level of disturbance attenuation.

theta_dot

Figure 3: Phase Portrait of ¢
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