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Abstract

In this paper� we use the theory of L� disturbance at�
tenuation for linear �H�� and nonlinear systems to
obtain solutions to the Nonlinear Benchmark Problem
�NLBP� proposed in the companion paper by Bupp et�
al� ���� By considering a series expansion solution to the
Hamilton�Jacobi�Isaacs Equation associated with the
nonlinear disturbance attenuation problem� we obtain
a series expansion solution for a nonlinear controller�
Numerical simulations compare the performance of the
third order approximation of the nonlinear controller
with its �rst order approximation �which is the same
as a linear H� controller obtained from the linearized
problem��

� Introduction

The control of nonlinear systems has received much
attention in recent years and many nonlinear control
design methodologies have been developed� It is im�
portant to determine the advantages and limitations
of the di	erent nonlinear control design methodologies�
The Nonlinear Benchmark Problem �NLBP� proposed
by Bupp et� al� ��� is an initial attempt to achieve this
objective�
The NLBP involves a cart of mass M whose mass

center is constrained to move along a straight horizontal
line
 see Figure �� Attached to the cart is a �proof
body
 actuator of mass m and moment of inertia I�
Relative to the cart� the proof body rotates about a
vertical line passing through the cart mass center� The
nonlinearity of the problem comes from the interaction
between the translational motion of the cart and the
rotational motion of the eccentric proof mass�
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Figure �� Nonlinear Benchmark Problem

After suitable normalization ���� the equations of mo�
tion for this nonlinear system are

�� � � � � � ��� sin � � �� cos �� �w ��a�

�� � �� �� cos �� u ��b�

where � is the �nondimensionalized� translational po�
sition of the cart and � is the angular position of the
rotational proof body� In equations ���� w and u are
the �nondimensionalized� exogenous disturbance and
the control torque� respectively� The coupling between
the translational and rotational motions is captured by
the parameter � which is de�ned by

� ��
mep

�I �me���M �m�
���

where e is eccentricity of the rotor� Clearly� � � � � �
and e � � if and only if � � �
 in this case the trans�
lational and rotational motions decouple and equations
��� reduce to

�� � � � w ��a�

�� � u ��b�

For this latter system� the e	ect of w is completely de�
coupled from the e	ect of u� Also� to control transla�
tional motion using u� the eccentricity must be nonzero�
Letting x �� �x�� x�� x�� x��

T � ��� ��� �� ���T � the sys�
tem ��� can be written compactly in state�space form
as
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� Problem De�nition

In this paper� we propose the following control design
problem to address the qualitative design guidelines
given in ����

Disturbance Attenuation Problem �DAP��
For the system ��� �nd a memoryless state�
feedback controller

u � k�x� ���

such that the following conditions hold�

�� When w�t� � � for all t � ��

lim
t��

x�t� � �

for all initial states x��� in some neigh�
borhood D of the origin�



�� Let z denote a performance output de�
�ned by

z �
h
Cx
u

i
���

where the matrix C is a design pa�
rameter� Given any disturbance w �
L������ and zero initial state �x��� �
��� the closed loop system satis�esZ

�

�

fjjz�t�jj� � �
�jjw�t�jj�g dt � � ���

where � is a design parameter�

Note that the second requirement implies that the
L��gain of the closed loop system from the disturbance
input w to the performance output z is less than or
equal to ��
The Disturbance Attenuation Problem has been

treated in ��� �� ��� In these references it has been shown
that� under mild conditions� the DAP can be solved�
provided one has a positive de�nite solution to the so�
called Hamilton�Jacobi�Isaacs Equation� The original
idea behind this approach was to formulate the DAP as
a di	erential game where u and w are the two opposing
players� The next section reviews the basic results of
��� �� which will be used in the sequel�

� The Hamilton�Jacobi�Isaacs Equa�
tion �HJIE�

System ���� along with its performance output� is de�
scribed by

�x � F �x� �G��x�u�G��x�w ��a�

z �
h
Cx
u

i
��b�

where the functions F�G��G� are obtained from ����
Also

F ��� � � ���

and we assume that the system

�x � F �x�

z � Cx

is observable in the sense that the zero solution is the
only solution for which z�t� is zero for all t�
One can readily show ��� �� �� that if there is a pos�

itive de�nite function V which satis�es the following
Hamilton�Jacobi�Isaacs Equation

DV �x�F �x�� �

�
DV �x��G��x�G

T
� �x��

�
��
G��x�G

T
� �x� �DV

T �x� � x
T
C
T
Cx � � ����

where DV is the derivative of V � i�e�

DV �
�

�V
�x�

�V
�x�

� � � �V
�xn

�
then the feedback controller

u��x� � � �
�G

T
� �x�DV

T �x� ����

yields a closed loop system with the following property�
For every initial condition x��� � x� and for every dis�
turbance input w one hasZ

�

�

fjjz�t�jj� � �
�jjwjj� gdt � V �x�� ����

Also� the �worst case disturbance
 is given by

w��x� �
�

���
G
T
� �x�DV

T �x� ����

Using V as a Lyapunov function one can show that the
undisturbed �w � �� closed loop system correspond�
ing to controller ���� is globally asymptotically stable�
Hence� a solution to the DAP is given by controller �����
The main stumbling block in using the above result

is that only rarely is one able to compute a function V
satisfying ���� in closed�form� So� instead of insisting
on closed form solutions� we solve ���� in an iterative
fashion based on series expansions� This is the method�
ology proposed in ��� �� for the solution of Hamilton�
Jacobi equations arising in optimal control problems�
We demonstrate here that the same procedure can be
applied to nonlinear L� disturbance attenuation prob�
lems� provided that the linearized version of the prob�
lem has a solution�
First we rewrite system ��� in the form

�x � F �x� �G�x�v ���a�

z �
h
Cx
u

i
���b�

where

G�x� �� �G��x� G��x�� and v ��
h
u
w

i
����

Letting

Q�x� �� x
T
C
T
Cx� R ��

h
� �
� ���

i
����

HJIE ���� can be rewritten as

DV F � �

�
DV GR

��
G
T
DV

T �Q � � ����

and letting

v� ��
h
u�
w�

i
we have

v� � � �
�R

��
G
T
DV

T ����

� Problem Solution

��� Linearized Problem

In the next section� it will be shown that the �rst term
in the series expansion for the controller ���� is the
solution to the corresponding linearized problem� Thus�
we �rst consider the linearized problem� which amounts
to solving a linear state�feedback H� problem�
The linearization of system ���� about x � � is given

by

�x � Ax�Bv ���a�

z �
h
Cx
u

i
���b�

with
A � DF ��� � B � G���

Considering a quadratic form

V �x� � x
T
Px

as a candidate solution to the HJIE associated with the
linear DAP we obtain

x
T �PA� A

T
P � PBR

��
B
T
P � C

T
C�x � �



This is satis�ed for all x i	 the matrix P solves the
following Algebraic Riccati Equation �ARE��

PA �A
T
P � PBR

��
B
T
P �C

T
C � � ����

In this case� v� is given by

v��x� � �R��BT
Px ����

Also� the corresponding controller u� is a suboptimal
�in terms of the achievable H� norm from w to z� H�
state feedback controller�
According to standard linear H� theory� if the pair

�C�A� is observable and the pair �A�B�� �B� � G�����
is stabilizable� a necessary and su�cient condition for
the linear system ���� to have L��gain less than � is
that the above Algebraic Riccati Equation �ARE� has
a positive de�nite solution P with the matrix

A� �� A�BR
��
B
T
P ����

Hurwitz�

��� Nonlinear Problem

First note that the HJIE ���� can be written as

DV F � v
T
�
Rv� �Q � � ���a�

v� �
�
�R
��
G
T
DV

T � � ���b�

Suppose

F � F
��	 � F

��	 � F
��	 � � � �

G � G
��	 �G

��	 �G
��	 � � � �

where F �k	� G�k	 are homogeneous functions of order k�
A homogeneous function of order k in n scalar variables
x�� x�� � � � � xn is a linear combination of

N
n
k ��

�
n� k� �

k

	
terms of the form x

i�
� x

i�
� � � � xinn � where ij is a nonnega�

tive integer for j � �� ���� n and i��i��� � ��in � k� The
vector whose elements consist of these terms is denoted
by x�k	
 for example� with four scalar variables one has

x��	 � �x�� x�� x�� x��T

x��	 � �x�
�� x�x�� x�

�� x�x�� x�x�� x�
�� x�x�� x�x�� x�x�� x�

��T

Therefore� a scalar homogeneous function ��k	 of order
k can be written as

�
�k	�x� � �x�k	 ����

where � � IR��Nn
k � Note that

F
��	�x� � Ax� G

��	�x� � B

We consider a series expansion for V of the form

V � V
��	 � V

��	 � V
��	 � � � � ����

where V �k	 is a homogeneous function of order k� Sub�
stituting ���� in equation ���b� one obtains that

v� � v
��	
� � v

��	
� � v

��	
� � � � � ����

where v�k	� is the homogeneous function of order k given
by

v
�k	
� � � �

�R
��

k��X
j
�

G
�j	T

DV
�k���j	T ����

Substitution of the expansions in ���� and ���� into
���a� and equating terms of order m � � to zero yields

m��X
k
�

DV
�m�k	

F
�k��	 �

m��X
k
�

v
�m�k	 T
�

Rv
�k	
�

�Q
�m	 � �

����
For m � � equation ���� simpli�es to

DV
��	
F

��	 � v
��	
� Rv

��	
� �Q

��	 � �

Since F ��	�x� � Ax�

v
��	
�

� � �
�
R
��
B
T
DV

��	T

and
Q

��	�x� � x
T
C
T
Cx

we obtain

DV
��	�x�Ax��

�
DV

��	T �x�BR��BT
DV

��	�x��xTCT
Cx � �

which is the HJIE for the linearized problem� Hence

V
��	�x� � x

T
Px

where PT � P � � solves the ARE with A� �� A �
BR��BTP Hurwitz
 also�

v
��	
� �x� � Kx� K � �R��BT

P ����

Consider now any m � � and rewrite ���� as

m��X
k
�

DV
�m�k	

F
�k��	��v�m��	T� Rv

��	
� �

m��X
k
�

v
�m�k	T
� Rv

�k	
� � �

Note that the last term in the above expression does
not depend on V �m	� Using

v
�m��	T
� � � �

�

m��X
k
�

DV
�m�k	

G
�k	
R
��

and de�ning

f �� F �Gv
��	
� ����

the �rst two terms can be written as

m��X
k
�

DV
�m�k	

F
�k��	 �

m��X
k
�

DV
�m�k	

G
�k	
v
��	
�

�

m��X
k
�

DV
�m�k	

f
�k��	

� DV
�m	

f
��	 �

m��X
k
�

DV
�m�k	

f
�k��	

where
f
��	�x� � A�x ����

For m � �� equation ���� can now be written as

DV
�m	

f
��	 � �

m��X
k
�

DV
�m�k	

f
�k��	 �

m��X
k
�

v
�m�k	T
� Rv

�k	
�

����

Equation ���� can be solved for V �m	 as follows� Con�

sider an expression for V �m	�x� of the form V �m	�x� �

Vmx
�m	� with Vm � IR��Nn

m � Substitute this expression



for V �m	�x� into ���� and solve the resulting linear sys�
tem of Nn

m equations for the unknown Nn
m elements of

the coe�cient vector Vm�
Thus� starting with V ��	�x� � xTPx and v

��	
� �x� �

Kx one can use equations ���� and ���� to compute
consecutively the sequence of terms

V
��	
� v

��	
�
� V

��	
� v

��	
�
� � � � ����

and construct iteratively the solution V of HJIE and
the associated v�� Notice that this procedure generates
not only the feedback control strategy u��x� de�ned in
���� for disturbance attenuation� but also the worst case
disturbance w��x� given in �����

� The Nonlinear Benchmark Prob�
lem

For the performance output z� we chose C �
p
��� I

where I is the �� � identity matrix� We also chose the
eccentricity parameter � � ����
In order to apply the proposed methodology to the

NLBP� we �rst expand the F and G functions cor�
responding to the right hand side of ��� in a multi�
variable series expansion about x � �� Noting that
���� cos� x� �� �� these expansions can be readily com�
puted as

F �x� �

�
����

x�

� �
�x� �

�
�x�

�x� �
�
�x�x

�
� � � � �

x�

�
�x� � �

�x
�
�x� � �

�x�x
�
� � � � �

�
���� ����

G�x� �

�
����

� �

� �
� �

�
�x

�
� � � � � �

� � �
�x

�
� � � � �

� �

�
� � �

�x
�
� � � � � � �

� �
�
�x

�
� � � � �

�
����
����

��� Linear terms

The linearized system is given by ���� with

A �

�
����

� � � �

� �
� � � �

� � � �

�
� � � �

�
���� � B �

�
����

� �

� �
�

�
�

� �

�
� � �

�

�
����
����

Using this data one can show that the linearized prob�
lem has a solution if and only if � � �� � ���� Choosing
� � � one can solve ���� for P � � and compute the
linear term of v��x� as

v
��	
� �x� �

h
������x� � ������x� � ������x� � ������x��������x� � ������x� � ������x� � ������x�

i
where the �rst row is the control u��	� �x� and the second

row the disturbance w
��	
� �x��

��� Higher order terms

The higher order terms are calculated using the pro�
cedure described in Section ���� The calculations are
simpli�ed for the NLBP because� as it is evident from
���� and �����

F
��k	�x� � � � G

��k��	�x� � �� k � �� �� � � �
����

As a result� V ��	�x� � � and v
��	
� �x� � �� The �rst

nonzero higher order term for the controller is third
order and can be computed from

v
��	
� �x��� �

�R
��


B
T
DV

��	T �x� �G
��	T �x�DV ��	T �x�

�
DV

��	�x�A�x��DV ��	�x�


F

��	�x� �G
��	�x�v��	� �x�

�
Speci�cally� both control ��rst row� and disturbance
�second row� are given by

v
��	
� �x� �

�
��������������������

�������x�
�x� � ������x�x�

� � ������x�
�x�

�������x�� � ������x�x�x� � ������x�x�
�

�������x�x�x� � ������x�x�x� � ������x�x
�
�

�������x�x�x� � ������x�x�
� � � � ����x��

�������x�
�x� � ������x�

�x� � �������x�x
�
�

�������x�x
�
� � ������x�

�x� � �������x�x
�
�

�������x�� � ������x�
�

�������x�
�x� � ������x�x�

� � ������x�
�x�

�������x�
� � ������x�x�x� � ������x�x�

�

�������x�x�x� � ������x�x�x� � ������x�x�
�

�������x�x�x� � ������x�x�
� � ������x�

�

�������x��x� � ������x��x� � ������x�x��

�������x�x�� � ������x�
�x� � ������x�x

�
�

�������x�
� � ������x�

�

�
��������������������

In fact� because of ����� one can show that all the non�
trivial terms of the series expansion for v��x� are odd�

that is� v
��k	
� �x� � � for k � �� �� �� � � ��

	 Simulations

Here� we compare the closed loop system with the lin�

ear controller u��	� with the closed loop system with the

nonlinear controller u
��	
� � u

��	
� � All the symbolic cal�

culations for the gains of the nonlinear controller were
performed using Maple� The numerical simulations
were performed using Matlab�
Two simulations were performed� The �rst simu�

lation compared the two controllers on the issue of
asymptotic stability� The results are shown in Fig�
ures ��� which contain the �phase portraits
 of the vari�
ables � and �� The solid lines denote the response due
to the nonlinear controller� and the dashed lines de�
note the response due to the linear controller� The
initial conditions for this simulation were chosen as
x��� � ��� ����� ��T � �From this simulation� it seems
that the region of attraction due to the nonlinear con�
troller is larger than that due to the linear controller�
for the chosen initial state� the state trajectory resulting
from nonlinear control tends asymptotically to the ori�
gin� whereas the trajectory resulting from linear control
tends to a limit cycle� The control histories are shown
in Figure ��
The second simulation compares the disturbance at�

tenuation properties of the two controllers� Since the
computation of the L��gain of a nonlinear system is
not an easy task� we carried out the following proce�
dure� We simulated the nonlinear closed loop system�
with both the linear and the nonlinear controller� with
zero initial state and with a disturbance w that approx�
imates in some sense the worst possible disturbance for
this problem� More speci�cally� we took the distur�
bance w � bw� where bw is the solution to the problem
of maximizingZ

�

�

fjjz�t�jj�� �
�jjw�t�jj�g dt

subject to the linearized closed loop dynamics �which is
the same for both controllers� and a given initial con�
dition�



A measure of the disturbance attenuation level� at
any time T � �� of the closed loop system is given by

ratio�T � ��

R T
�
jjz�t�jj�dt

��
R T
�
jjbw�t�jj� dt ����

Note that if the L��gain of a nonlinear closed loop sys�
tem is less than or equal to �� then ratio�T � � � for all
T � ��
Simulations were performed using several initial con�

ditions to generate the �worst disturbance
 bw� In all
cases� the nonlinear controller outperformed the linear
one although only by a small margin� Figure � contains
results when the disturbance bw is generated with ini�
tial condition x��� � ��� ����� ��T � In this case� it turns
out that limT�� ratio�T � � ���� for the linear con�
troller� while limT�� ratio�T � � ���� for the nonlinear
controller�


 Conclusion

We have applied the theory of L� disturbance attenua�
tion for nonlinear systems to the recently proposed non�
linear benchmark problem� A nonlinear state�feedback
controller is computed recursively by considering a se�
ries expansion solution to the associated Hamilton�
Jacobi�Isaacs Equation� The procedure is straightfor�
ward and can be readily automated in a computer� Nu�
merical simulations indicate that the performance of the
third order approximation of the nonlinear controller
provides an improvement over its �rst order approxi�
mation �which is the same as a linear H� controller
obtained from the linearized problem�� This improve�
ment is however not very signi�cant� thus indicating
that higher order terms may be necessary to extend
the region of attraction of the closed�loop system� or to
increase the level of disturbance attenuation�
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