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Abstract
It is a well-known fact in the literature of spacecraft sta-

bilization, that a symmetric spacecraft with two control
torques supplied by gas jet actuators is not controllable,
if the two control torques are along axes that span the
two-cdimensional plane which is orthogonal to the ais of
symmetry. However, feedback control laws can be derived
for a restricted problem corresponding to attitude stabi-
lization about the symmetry axis. The final orientation
angle about this axis is undetermined. The purpose of this
paper is to present a new methodolog for constructing
feedback control laws for this restrcted problem, based
on a new formulation for the kinematics.

1 Introduction
The problem of attitude stabilization of a rigid bod

has received a lot of attention recently [1, 2, 3, 4, 5, 6, 7].
One of the earliest works on the subject is due to
Mortensen j1J, where he considered global asymptotic sta-
bilization o the complete attitude motion using three in-
dependent gas jet actuators. A complete mathematical
description of the problem however, was first given by
Crouc [3], where he provrided necessar and sufficient
conditions for controllability of a rid body in case of
one, two, or three independent acting torques. The re-
suits of [3] can be summarized as follows For three iMde-
pendent control torques the system is completely control-
lable, although for tie case of momentum wheel actuators
a certain minimum control effort is required. A neces-
sary and sufficent condition for complete controllabiity
of a symmetric rid body with control torques supplied
by two pars of gas jet actuators, about axes spanning
a two dimensional plane, is that the axis orthogonal to
this plane must not be a princpal axis of symmetry of
the spacecraft. For the general case, the system is gener-
icaIll controllable, unless the inertia matrix is a mudltiple
of the identity matrix and certain algebraic criteria ao
hold. These cnteria impose certain conditions on the rel-
ative magnitude of the princpal inertias, as in the case of
stability considerations. For such a system, it is further
shown that controllability is equivalent to local controlla-
bility at any enuilibrium. When a spacecraft is controlled
by less than tree independent momnentum wheel actua-
tors, the system is not controllable, or even accessible at
any equilibrium.
Many results are available in the literature for the case

of three independent controls. For example [2, 4, 5] derive
linear and nonlinear feedback stabfliing control laws for
the attitude regulation of rigid spacecraft. On the con-
trary, the problem of attitude stabilization with less than
three independent control torques has been only recently
dealt with [6, 7]. In [6] it is shown that a rigid spacecraft
controlled by two pairs (couples) of gas jet actuators can-
not be asymptotically stabilized to an equilibrium using a
continuouly differentiable, i.e. C', feedback control law.
InI [7] the problem of attitude stabilization of a symmet-
nc spacecraft is treated, using control torques supplied

by two pairs of gas jet actuators about axes spanig
a two dimenona ple orthogonal to the asof ym-
metry. The complete dynamics of the spacecraft system
fail to be controllble or even a ibleinthese case
thus, the methodoogies of [3] ad [6] are not applicable.
HIowever the spacecraft dynamic strongl accble
d small time locally controllable in a restrcted sense,
namely when the spin rate remain zero. It is sho that
the restricted (non-spinning spacecraft) dynamics cannot
be asymptotically stabilized using smooth C' feedback. A
nonsmooth control strategy is developed for the restricted
spacecraft dynamics which achieves an arbitrary reorien-
tation of the spacecraft. This nousmooth control law is
based on previous results on stabilization of nonholonomic
mechanical systems [8, 9j.

In this paper the prob of attitude abiztion of a
rd body (spacecraft) is revisited. Specifically, we con-
sider the attitude stabilization of an axially symmetrc
spacecraft using two control torques by a pair of gas jets
abut axes spannig a two-dimensonal plane orthogonal
to the axis of symmetry. Without loss of generality we
can assume that the torques are acting along the prin-
cipal axes. This problem is of particular theoretical and
practical iterest because, under these assumptions, as
mentioned earlier, the system dynamics is not controllable
or even accessible. Usin4 a new formulation of the kine-
matic equations derived nm [10], we derive asymptoticaly
stabilizing feedback controls for the restricted problem of
a non-spmning spacecraft. The results can be naturally
extended to the case of non-zero spin rate, and in this case
lead to spin axis stabilization, i.e., to a revolute motion
about the axis of symmetry. This is of pre actical
importance, since spin stabilization is often utilized dur-
ing deployment and station-keeping of modern satellit
in orbit.

2 System Dynamics and Kinematics

Euler's Equations of Motion
Let Wi, WW3 denote the angular velocity components
along a body-fixed reference frame located at the center of
mass, and aligned along the principal axes of a rotating
gid body. Then Euler's equations of motion describe

the dynamics of the motion and, for a symmetric bod
(II = 12) subject to two control torques along princiap
axes, take the form

l = alSWW3 + VI

=;o2 a2W3W1 + U2

t3= 0

(la)
(lb)
(lc)

where al = (I: - Is)/l,, a. _ (I. -I)/I2, a, Mil/Il
and *2 M2I/2. Here Mi,M2 are the acting torques
and I, I2, I3 denote the pnrncipal moments of mertia.
Introducing the complex variables w = wi + iw and
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u uI + i u2, one rewrites (la-ib) in the compact form

4=-ia, w3ow+ u (2)

where w30 = W3(0). A complete formulation of the atti-
tude problem requires the descripton of the kinematics,
in addition to the dynamics introduced here. In contrast
to the dynamics formalism, there is more than one way
to descibe the linematics of a rotating body.

Kinematics
The kinematic equations relate the components of the an-
gular velty vector with the rates of a set of parame-
ters, that d be the relative orientation of two refer-
ence frames (commonly the inertial and the body-fixed
frames). Any two reference frames are related by a ro-
tation matrix R. The set of all such matrices form what
is commonly known as the (three-dimensional) rotation
group, COnsg of a matrices which are orthogonal and
have determinat +1, denoted by SO(3). Henceforth,
we wil refer to SO(3) simply as the rotation group. In
fact, SO(3) is more than a group, but carnres an inher-
ent smooth manifold structure, and thus, forms a (con-
tinuous) Lie group. The attitude history of the movig
reference frame with respect to the constant (inertial) ref-
erence frame can therefore be described by a curve traced
by the corresponding rotation R(t) E SO(3, with S0(3)
taken with its manifold structure. The differential equa-
tion satisfied while R(t) is moving along this trajectory is
given by

R(t)= S(WI,W2,w4)R(t)
where S(wl, W2, W3) iS the skew-symmetric matrix

, -r/2 <9 < r/2, -r < 0 < r). On this submanifold,
9 and 9 determine the orientation of the lcgal body-fixed
3-axis (the symmetry axis) with respect to the iertil
3-ais, and t determines the relaive rotation about this
axs [12]. ou t the folowing discuso we wi
asume that the system trajectores are confined on M.

3 Alternative Formulation of the
Kinematics

Next we present a reformulation of the kinematics that
will simpliy the consequent anal i ctl This
new formulation is based on an idea by [arboux 3], and
was initially applied to the problem of attitude d m
in [10], altough it appears tW Leimanis [14] was awarze
of this posibility. From (3) one sees that this matrix
differential equation involves nine parameters (the direc-
tion cosines of the corresponding frames), however be-
cause of the constraint RRt = I imposed on the elements
of SO(3), there are actually only three free parameters
involved in the system of equation (3). These three pa-
rameters can be chosen as the direction cosines of one
of the body-axes with respect to the inertial axes. Let
[a, b, c]t denote any column vector of the matrix represen-
tation of R having entries r,i, for i,j = 1,2,3. That is,
[a, b, c]' = (ris, r23, r3i]t, for some = 1, 2, 3. Clearly,

(3)
; 1 [ -W3
cj W2

W3 -W21 1a
0 WI b

-WI GiC
(6)

S(l,w2,W) [ -W

W2

hJ3
0

-WI

- :2
WI
O,

There is more than one way to parametrize the rotation
group, i.e., to specif, a set of- parameters such that ev-
ery element R i 30(3) is uniquely and unambiguously
deterined i 1]. The commonly used three-dimensional
parametrization of the rotation group leads to the famil-
iar Eulerian angle formulation of the kinematical equa-
tions. Introducig, for example, the three-dimensional
parametrization of S0(3), based on a 3-2-1 Eulerian
angle sequence [12], one has that the rotation matrix
R = R(t,O, t) is given by

[ ctcG stcG -soe
R = -stce + cIsOsq$ cOct + stsest cOs9 (4)

[ sts4 + ctsOco -cts4, + stsOct cOcO.J
where c and s denote cos and sin, respectively. The as-
sociated kinematic equations are

$ = wl + (w2sin X +w3cos9) tanO (Sa)
6i = W2C0SO4-W35sin1 (5b)

'P = (w2 sint+w3cos4) sec i (Sc)

Using this parametrization of S0(3), the orientation of
the 1lcal body-fixed reference frame with respect to the
inertial reference frame is found by first rotating the body
about its 3-axis through an angle t, then rotating about
its 2-axis by an-angle and finally rotating about its 1-axis
by an angle 0. Equations (5) exhibit a sigularity at e =
+r/2. For this reason one must restrict the subsequent
discussion to --a < <Cr, -r/2 < 0 < r/2 and -r <
P<Sr. Let M denote the submanifold of T'3A x
S1 xS' determined by the previous inequalities, where S'
represents the usual mathematical notation for the unit
circle. That is, let M = {(t,O,tb) E T : -r <4 <

Note that these three parameters do not provide an-
other three-dimensional parametrization of the rotation
group. (Check, for example, that the transformation
(t,O, t) - (a, b, c) is singular.) Because of the constraint
a2 +b2 + c2 = 1 we can eliminate one of the three param-
eters a, b, c, to get a system of two first order differential
equations. The most natural and elegant way to reduce
the third order system (6) to a second order system is
by the use of stereographic proection (15]. That is, if we
let a, b, and c represent coordinates on the unit sphere

= {(XI,52,z3) E R +I+42 = 1), then, for
(a,$b,e E S 2, the stereographic projection a: S2 _ C
define by

A b-ia 1-c
I1+c b+ia

induces the following differential equation for the complex
quantity w

tb+iww= 7)

where w = wl + i ua2 and the bar denotes complex con-
jugate. Equation (7) is a scalar Riccati equation with
time-varying coefficients. The real and imaginary parts
of o = w, + i'2 satify the differential equations

tbl = W3W2 + W2Wl W2+ 2-(1 + Wl_W2)2
W2 = _W3W1+WIWItW2+(1+W2_W2)

The stereographic projection a establishes a one-to-one
correspondence between the unit sphere s2 and the com-
plex plane C. It can be easily verified that the inverse
map -':C __ 2, W -(a,b, c) is given by

a=i(w - i7b) b w + i
C

JW12_1
JW12 +I IJ12 1w1W12+ 1
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and can be used to find a, 6, c once w Ls lmown. Here
* denotes the absolute value of a complex number, i.e.,

= Z12, z E C.Z2=Zg C
In order to establish the relationship between w and

the partiular Eulerian angle set used, notice that we
can in principle identify [a b, lt with any column vec-
tor of the rotation matrix iA, where R can be expressed
in terms of a of the parametrizations of SO(3). This
gives a great deal of flexibility in the analyss d de-

of control aw for attitude stabilization. For the
three-dimensional 3-2-1 Eulerian angle parametrization,
the matrix R = R(t, 0,#) is given by (4). Any other
parametrization is equally valid, however. Identifying, for
example, [a, b, cit with the third column of R one estab-
lishes a one-to-one correspondence between w and (9, 4')
from

sin 46 cos U + i sin 9
w =

1 + cost Coe 9
or -in terms of real and imaginary parts of wo,

si4cos U
WI = 1+ Cost co a sin0

W2 1+CostCosa (8)

As can easily be checked, the determinant of the Jaco-
bian of the transformation (8) is cos f/(1 + cosv cosU)2.
Zeros occur for 9 = ±r/2. Moreover, 1 + cos t cos $0O
as long as B # dr/2. Thus, the proposed transformation
does not introduce any additional mlties, than the
original ones due to the intrinsic singugaty of the pa.rtic-
ular Eulerian angle formulation. In fact, (8) establishes
a smooth change of coordinates (i.e., a diffeomorphism)
between the (wl,s2) and (t,O).

Althouph not necessary at this point for completeness
we also gve the counterpart of the diferential equation
(5c) for 4m the (w, w) space:

+~ ~~(+ff(w)(I + W12)
(I + W2)(I +w2)

4 Control Strategy
It is dear from equation (1c) that for a symmetric body,

no control can affect the value of the component of the
angular velocity W3 along the symmetry axns. In fact,
the value of wv3 remains constant for all times. Clearly, as
already mentioned, this system is not controllable. There-
fore, if the initial condition W3(0) is not zero, no control
can drive the system to the origin (wI = 2 =W32
4'=0). Of course, if w3(0) $0 then it is meaningless to
require 4' = 0, but we may require a control law such that
W1 =w2==O=O. This last control corresponds to spin
axs stabilization for a spinning (symmetric) spacecraft
and is of important practical interest. From equations -(8)
notice that s = 0 implies that sinG = 0 and sinq = 0,
therefore w = 0 implies B = 0 and 4 = 0 on M. We
have therefore that wO= 0 (with the previous identifica-
tion of the- third column of the rotation matrix) implies
that the body-fixed 3-axis (the symmetry axis), is aligned
with the inertial 3-axis (for the 3-2-1 set). However, we
have no a priori information about the relative rotation of
the body about its symmetry axis. That is, stabilization
is achieved about a submamlfold 4' = const. of M. On
this submanifold, the angle t can have any value.

Zero Spin-Rate Case
We now turn our attention to the problem of zero spin
rate, i.e., assume a priori that w3(0)= 0. Following the
terminology of [71 we refer to this problem as the restricted
stabilization problem. For W3-0O the restricted space-
craft dynamics are given by the equations

* = wi +w2sinttane
9 = W2 cOS

4 = w2sin4'sec9

(lOa)
(lOb)
(10c)

In this section we present a methodology to construct
feedback control laws for the system of equations (9) and
(iOa-lOb), which depends on the alternative formulation
of the kinematic equations presented in section 3. Asymp-
totic stabilit of the dosed-loop system is easily demon-
strated by yapunov's direct method. Recaing that 4
is an ignorable variable for the system (10), in the subse-
quent analys;is we tacitly discard the equation for 4'. The
problem of also stabizing 4 = is more difficult. In
lact, in [7] it was shown that any stabilizing feedback
control law of the complete restricted system, i.e., for
(wI,Iw,1t ,04), must be necessarily nonamooth. In the
same paper a methodology based on the theory of con-
trol of nonholonomic sstems (8, 9] was ued to construct
such nonsmooth stab: control laws. The stabiliza-
tion of the complete system (9)-(10) will be the subject
of a forthcoMg paper 16]

Introducing t e comelex control variable s= Ul + iu2
equations (9) and the knematic equation (7) simplfy to

0 = u

W W 22b-i 2W
(lia)

(Ilb)

where (w, w) E C x C. This system of differential equa-
tions is mi one-to-one correspondence with the system of
equation (9}-(10a.1lb). The system (11) falls wnthin the
more general class of nonlinear systems of the form

Y = u

z = f(z, Y)
(12a)
(12b)

where f: RT x Rm - R" is smooth, with f(O,0 ) = 0.
System (12) is a system in cascade form and it is a well-
known result [17] that for systems of this form, if the sub-
system i = f(z, y) is smoothly stabilizable (regarding y
as a control-like vanable), then the extended system (12)
is also smoothly stabilzable. In other words, if in (12) the
subsystem (12b) is smoothly stabilizable, then adding an
integrator does not change this property. We will use this
resut in order to derive asymptotically stabilizin control
laws for the system (11). Ve have the olowing tfheorems
concerning asymptotic stabilization of the system (11).

Theorem 4.1 The choice of the linear feedback control

' = -Kw (13)

where K> 0, globally asymptotically stabilizes (11b).
Proof. With this choice of feedback, the dosed-loop sys-
tem becomes

w =-f(, + IW12)w2i (14)

The positive definite function V : C -bIR defined by
V(wo) = wil = lwjJ2 is a Lyapunov function for (14). In-
deed, differentiating along trajectories of (14) one obtains

f7(w) = uinb+wWs
= -4 (I + IWi2)wOD (I + 1Wso2)bWs
- -K(1 + 1W12)1W12 . 0

(9a) Since ('(w) = 0 if and only if w = 0, the dosed-loop
(9b) system (14) is asymptotically stable. Global asymptotic

48

W=-U

'02 = U2



stability follows from the facts that these statements hold
for all w E C and V is radially unbounded, i.e., V(w) --

x0, for Awl - co. Notice that since V < -nV one, in fact,
guarantees exponential stability for the system (14) with
rate of decay 4./2. U

Theorem 4.2 7he choice of the feedback control law

u =-2 _+ ) (W + NW) (15)

with N > 0 and a > 0, globally asymptotically stabilizes
system (11).
Proof. With this choice of feedback, the closed-loop sys-
tem becomes

w = -j(w + OW2)a(W +eCW) (16a)

tiu+ W 2 (16b)

The set£ = {(w, w) E C xC: w+ cw = 01 is a positively
invariant set and a global asymptotic attractor for (16).
To see this, let z = w + Nw. Then the system equations
become

z = -az (17a)

w = -2w+2--wwI +-w2 (17b)

La Salle's theorem guarantees the global asymptotic sta-
bility of (16), if the trajectories of (16), or equivalently of
(17) remain bounded [18]. To this end, let V be the posi-
tive definite function of Theorem 4.1, i.e., let V(w) = 1w12.
We will show that V is nonincreasing outside a bounded
set that contains the origin; in particular, we claim that
V(w) < 0 on the set P = {wEC: Awl > Iz(0)I/n}. This
will imply boundedness of solutions of w, hence of (17).
Differentiating along trajectories of (17b) one obtains

V(W) = __iwI2 - rwl4 + Zjt(1 + 1wI2) + jw(1 + Awl2)
- _XiW12 -NIW1 + Re(zIZ4(1 + 1w12)
< -.XIWI2-riclW14 + IzIItDi(l + Awl2)

where Re(.) denotes the real part of a complex number
and where we made use of the fact that Re(z) < fzl for
all z E C. From (17a) one has that z(t) = z(O)e-t and
in particular Iz(t)l < Iz(0)I. Thus,

V(w) < -KlwlI- NlwlA + jz(O)AAibA(1 + IwA2)
= -(1 + AwI2)AwA(NAWA - IZ(0)I)

For Awl . Az(0)A/N one has V(w) < 0 as claimed. This
completes the proof. U

The previous control law is not the only choice of sta-
bilizin. feedback for the system (11). In fact, one has the
followng

Theorem 4.3 The choice of the feedback control law

U=jJ (w + OW2)-_a(w +Ncw)-w(1l +AwI2) (18)

with N > 0 and a > 0, globally asymptotically stabilizes
system (11).

Proof. With this choice of feedback, the closed-loop sys-
tem becomes

w = -j(w+&w )-a(w+ w)-W(1 +lWl2) (19a)

t = -+-2
2 2

(19b)

Indeed, the positive definite function V : C x C - R
defined by V(w, w) = Aw12 + Iw + NW12/2 is a Lyapunov
function for the system (19). Differentiating along trajec-
tories of the system (19), one can show that

V(w, W) =_-alw + W12 - .1w12(l + AW12) < 0

Since V(w,w) = 0 if and only if w = and w = O, the
system (19) is asymptotically stable. Global asymptotic
stability follows from the facs that the previous state-
ments hold for all (w,Iw) E Cx C and V is radially un-
bounded, i.e., V(w,w) -, xo, for 1l(w,w)ll -. oo. In fact,
since V <-V, where P = min{2a, c) the system (19) is
globally exponentially stable with rate of decay fi/2. U

Non-zero Spin-Rate Case
We mention in passing that, surprsingly enough the sta-
biEzing control laws given above, can alsobe used to
achieve stabilization about the symmetry axi, even when
the spin rate W3 is not zero. In such a case the final state
is a pure revolute motion about the symmetry axis. Using
(2) and (7) the attitude equations for a symmetric body,
with ws(0) # 0, can be written as

w = -sialw3ow + u

tb= w w 2-isw30w + - +-2w
(20a)

(20b)

Notice first that with the control (13) the subsystem (20b)
is (locally) asymptotically stable; for its linearization has
eigenvalue -/2-iw3o (sc > 0). In fact, one can easily
verify the following two heorems.

Theorem 4.4 The choice of the feedback control law

= -CW (21)

with K > 0 globally asymptotically stabilizes (206).

Proof Use the Lyapunov function of Theorem 4.1. In
fact, with this Lyapunov function one can show global
exponential stability of (20b) with rate of decay K/2.

Theorem 4.5 The choice of the feedback control law

U = ia1w30W + K(iw30w--iW2)- a(w +Kw) (22)

with ic > 0 and a > 0, globally asymptotically stabilizes
system (20).

The proof of Theorem 4.5 traces the steps of the proof
of the Theorem 4.2, and will not be repeated here.

5 Numerical Example
We illustrate the previous ideas with a numerical ex-

ample. The control law given in Theorem 4.2 is used to
stabilize the system of equations (11) about the origin.
The initial conditions are given by wi (0) = 0.75 rad/sec,
w2(0) = -0.5 rad/sec, w3(0) = 0, O(0) = 2.5 rad,
B(0) = 0.5 rad- and t(0) = 0.25 rad. The results with
control law (15) and Nc = a = 1 are shown in Figs. 1-2.
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Figure 1: Angular velocities wi and w2.
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6 Conclusions
The problem of stabilization of a symmetric spacecraft

with two gas jet actuators alihned about the principal axes
of equal moments of inertia is investigated. Using a new
formulation for the kinematic. equations, asymptotically
stabilizig controls have been derived for the restricted
problem of spin s stabilization. The asymptotic stabil-
ity of the cled-loop system is proved by construction of
appropriate Lyapunov functions. The stabilizing control
laws derived are especially simple and elegant. Ioreover,
they do not depend on the particular chokce of the Eule-
rian angle set, sed to describe the attitude onrentation in
the inertial space. This provides a peat deal of freedom
in the analysis and design of attitude control laws.
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