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Abstract by two pairs of 3u jet actuators about axes spanning

a two dimension:

It is a well-known fact in the literature of s aft sta-
bilization, that a symmetric spacecraft with two control
tor%nes supplied by gas jet actuators is not controllable,
if the two control torques are along axes that span the
two-dimensional plane which is orthogonal to the axis of
symmetry. However, feedback control Jaws can be derived
for a restricted Eroblem corresponding to attitude stabi-
lization about the symmetry axis. e final orientation
angle about this axis is undetermined. The purpose of this
paper is to present a new methodology for constructin
feedback control laws for this restricted problem, b
on a new formulation for the kinematics.

1 Introduction

The problem of attitude stabilization of a rigid bod
has received a lot of attention recently [1, 2, 3, 4, 5, 6, 7i
One of the earliest works on the subject is due to
Mortensen P], where he considered global asymptotic sta-
bilization of the complete attitude motion using three in-
dependent gas jet actuators. A complete mathematical
description of the problem however, was first given by
Crouch [3], where ie provided necessuioand sufficient
conditions” for controllability of a rigid y in case of
one, two, or three independent acting torgues. The re-
-sults of [3] can be summarized as follows. For three inde-
Fendent control tOt%ues the system is completely control-
able, although for the case of momentum wheel actuators
a certain minimum. control effort is required. A neces-
sary and sufficient condition for complete controllability
of a symmetric rigid body with control torques supplied
by two pairs of gas jet actuators, about axes spanning
a two dimensional plane, is that the axis orthogonal to
this plane must not be a principal axis of symmetry of
the spacecraft. For the general case, the system is gener-
ically controllable, unless the inertia matnx is a multiple
of the identity matrix and certain algebraic criteria
hold. These criteria im certain conditions on the rel-
ative magnitude of the principal inertias, as in the case of
stability considerations. For such a system, it is further
shown that controllability is equivalent to local controlla-
bility at any equilibrium. When a spacecraft is controlled
by less than three independent momentum wheel actua-
tors, the system is not controllable, or even accessible at
any equilibrium.

Many results are available in the literature for the case
of three independent controls. For example [2, 4, 5] derive
linear and nonlinear feedback stabilizing control laws for
the attitude regulation of rigid s aft. On the con-
trary, the problem of attitude stabilization with less than
three independent control torques has been only recentl
dealt with [6, 7]. In [6] it is shown that a rigid spacecraft
controlled by two pairs (conples) of gas jet actuators can-
not be asymptotically stabilized to an equilibrium using a
continuously differentiable, i.e. C!, feedback control law.
In [7] the problem of attitude stabilization of a symmet-
ric spacecraft is treated, using control torques supplied

plane orthogonal to the axis of sym-
metry. The complete dynamics of the aft system
ﬁl:.lil tohbe cotnl:od ble orfe[v:ﬁn ‘gcﬁ:fibe in these c%sles
thus, the me ologies of an are not applicable.
However, the spacecraft dynamics is strongly accessible
and small time locally controllable in a restricted sense,
namely when the spin rate remains zero. It is shown that
the restricted (non-spinning s dynamics cannot

be asymptotically stabilized using smooth C! feedback. A
nonsmooth control stra is developed for the restricted
spacecraft dynamics which achieves an arbitrary reorien-
tation of the spacecraft. This nonsmooth control law is
based on previous results on stabilization of nonholonomic
mechanical systems [8, 9).

In this r the problem of attitude stabilization of a
igid body (spacecraft) is revisited. Specifically, we con--
sider the attitude stabilization of an axially symmetric
s§zcecra.ft using two control torques by a pair of gas jets
about axes spanning a two-dimensional plane orthogonal
to the axis of symmetry. Without loss of generality we
can assume that.the torques are acting along the prin-
cipal axes. This problem is of particular theoretical and -
practical interest because, under these assumptions, as
mentioned earlier, the system dynamics is not controllable
or even accessible. Using a new formulation of the kine-
matic equations derived in [10], we derive asymptotically
stabilizing feedback controls for the restricted problem of
a non-spinning aft. The results can be naturally
extended to the case of non-zero spin rate, and in this case
lead to spin axis stabilization, i.e., to a revolute motion
about the axis of symmetry. This is of prime practical
importance, since spin stabilization is often utilized dur-
ing d;ployment and station-keeping of modern satellites
in orbit. '

2 System Dynamics and Kinematics

Euler’s Equations of Motion

Let wy,w2,ws denote the angular velocity components
along a bon-ﬁxed reference frame located at the center of
mass, and aligned along the principal axes of a rotating
rigid body. Then Euler’s equations of motion describe
the dynamics of the motion and, for a symmetric bod
(I1 = I,) subject to two control torques along principa{
axes, take the form .

W = Giwews + ¥ 7 (ll)
W2 = Gawswh + 2 (lb)
ws = 0 (lc)

where a; 2 (I - L)/ 11, a2 2 (Is - h)/ 12, vy = M/

and u; = M,/I;. Here M;, Mz are the acting torques
and I, I>,I; denote the principal moments of inertia.

Introducing the complex variables w = w) + fup and



=y +i 42, one rewrites (1a-1b) in the compact form
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where w3 = w3(0). A com(flete formulation of the atti-
tude problem requires the description of the kinematics,
in addition to the dynamics introduced here. In contrast

Y= —taywiow + 4

to the dynamics formalism, there is more than one way
to describe the kinematics of a rotating body.
Kinematics

The kinematic equations relate the components of the an-
gular velocity vector with the rates of a set of parame-
ters, that describe the relative orientation of two refer-
ence frames (commonly the inertial and the body-fixed
frames). Any two reference frames are related by a ro-
tation matrix R. The set of all such matrices form what
is commonly known as the (three-dimensional) rotation
up, consisting of all matrices which are orthogonal and
ave determinant +1, denoted by SO(3). Henceforth,
we will refer to SO(3) simply as the rotation group. In
fact, SO(3) is more than a group, but carries an inher-
ent smooth manifold structure, and thus, forms a (con-
tinuous) Lie group. The attitude history of the moving
reference frame with respect to the constant (inertial) ref-
erence frame can therefore be described by a curve traced
by the corresponding rotation R(t) € SOdS?R, with SO(3)
taken with its manifold structure.” The differential equa-
tion satisfied while R(¢) is moving along this trajectory is

given by .
R(t) = S(w1, w2, ws) R(t) 3)

where S(w1,w2,ws) is the skew-symmetric matrix

A 0 w3 —wse
Swy,we,ws) = | —ws 0 w1
w2 —Ww1 0

There is more than one way to parametrize the rotation
group, i.e., to speci 5 a set of parameters such that ev-
ery element R in SO(3) is uniquely and unambiguously
determined {11]. The commonly used three-dimensional
parametrization of the rotation group leads to the famil-
1ar Eulerian angle formulation of the kinematical equa-
tions. Introducng, for example, the three-dimensional
parametrization of SO(3), based on a 3-2-1 Eulerian
angle sequence [12], one has that the rotation matrix

R = R(¢,0,¢) is given by

cycl sych —s0
R= [ —stcd + cvslsd  cvcd + sypsfsd c0.s¢] 4)
sYsd + csfcd —cysd + svsbcd clcd

where ¢ and s denote cos and sin, respectively. The as-
sociated kinematic equations are

¢ =_ wi+(w2sing +wscosg)tand (5a)
§ = wycosd—wssing (5b)
¥ = (wasing -+ wscosd)sech {5¢)

Using this parametrization of SO(3), the orientation of
the local body-fixed reference frame with respect to the
inertial reference frame is found by first rotating the body
about its 3-axis through an a.:ﬁle ¥, then rotating about
its 2-axis by an angle ¢ and finally rotating about its 1-axis
by an angle ¢. Equations (5) exhibit a singularity at § =
+x/2. For this reason one must restrict the subsequent
discussion to -x < ¢ <7, x/2 <0 < x/2 and —«x <
% < x. Let M denote the submanifold of T® = §! x
5! xS? determined by the previous inequalities, where S!
represents the usual mathematical notation for the unit
circle. That is, let M = {(¢,0,¥) € T° : —x < ¢ <
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x,—x/2<8<x/2,~x < ¢ < x}. On this submanifold,
¢ and @ determine the orientation of the local body-fixed
3-axis (the symmetry axis) with respect to the inertial
3-axis, and ¥ determines the relative rotation about this
axis [12). out the following discussion we will
assume that the system trajectories are confined on M.

3 Alternative Formulation of the
Kinematics

Next we present a reformulation of the kinematics that
will simplify the co: uent analysis s'gniﬁca.ntl . This
new formulation is on an idea by Darboux [13}, and
was initiall :EKlied to the problem of attitude dynamics
in [10}, although it appears that Leimanis [14] was aware
of this poesibility. From (3) one sees that this matrix
differential* equation involves nine parameters (the direc-
tion cosines of the corresponding frames), however be-
cause of the constraint RR' = I imposed on the elements
of SO(3), there are actually only three free parameters
involved in the system of equations (3). These three pa-
rameters can be chosen as the direction cosines of one
of the body-axes with respect to the inertial axes. Let
[a,b, c]* denote any column vector of the matrix represen-
tation of R having entries r,;, for i,5 = 1,2,3. That is,
(a,d, €]’ = [r1;, r25, 35}, for some j = 1,2,3. Clearly,

a 0 w3 -w; a
; =[_w3 : wI][b] ®)
¢ w2 —w 0 c

Note that these three parameters do not provide an-

other three-dimensional parametrization of the rotation
group. (Check; for example, that the transformation
(¢,9,9) « (a,b,c) is singular.) Because of the constraint
a? +b? + ¢ = 1 we can eliminate one of the three param-
eters a, b, c, to get a system of two first order differential
equations. The most natural and elegant way to reduce
the third order system (6) to a second order system is
by the use of stereographic projection [15]. That is, if we
let a,b, and ¢ represent coordinates on the unit sphere
s = {(z;,zzz,za) € R® : z3+23+2% =1}, then, for
a,b,c) € S%, the stereographic projection o : $? — C
Seﬁnag by ’

ab—ta 1-c
w=a(a,b,c)=m=m

induces the following differential equation for the complex
quantity w
u':+|'w3w=-'2£+%w2 (7)

where w = w1 + iw; and the bar denotes complex con-
jugate. Equation (7) is a scalar Riccati equation with
time-varying coefficients. The real and imaginary parts
of w = w; + § w; satisfy the differential equations

9 = wawsy +wrwywy + %(l +wi — w3)

W2 = —wiw +wiwviwy + %(1 + w; - w?)
The stereographic projection o establishes a one-to-one

correspondence between the unit sphere S? and the com-
plex plane C. It can be easily verified that the inverse
map 0~ : C — S$%, w— (a,b,¢) is given by

= i{w — )
T wlP+1”

_ w4 _ Jwfr-1

TP+ T T juP+1



and can be used to find a,b,c once w is known. Here
| .| denotes the absolute value of a complex number, i.e.,
zz= 3%, z€ C. ‘

In order to establish the relationship between w and
the particular Eulerian angle set , notice that we
can in principle identify [a,8,c]° with any column vec-
tor of the rotation matrix ﬁ, where R can be expr
in terms of any of the parametrizations of SO(3). This
gives a great deal of flexibility in the analysis and de-
sign of control laws for attitude stabilization. For the
three-dimensional 3-2-1 Eulerian angle parametrization,
the matrix R = R(y,0,¢) is given by (4). Any other
parametrigation is equally valid, however. Identifying, for
example, [a,d, ¢}’ with the third column of R one estab-
lfirsgxes a one-to-one correspondence between w and (9, ¢)

" _ singcos + isin g

T 14 cos¢cosh
or in terms of real and imaginary parts of w,

_ singcost ) ®
T 1+cospcosd’ 2" 1+cosgcosd

As can easily be checked, the determinant of the Jaco-
bian of the transformation (8) is cos8/(1 + cos ¢ cos 8).
Zeros occur for § = +x/2. Moreover, 1 + cos¢cosf # 0
as long as 6 # +x/2. Thus, the proposed transformation
does not introduce any additional singularities, than the
original ones due to the intrinsic singularity of the partic-
ular Eulerian angle formulation. In fact, (8) establishes
a smooth change of coordinates (i.e., a diffeomorphism)
between the (w;, w2) and (¢,0).

Although not necessary at thi l{mint; for completeness
we also give the counterpart of the differential equation
{(5¢) for ¢ in the (w, w) space:

P o (w+ 9)(1 +|w]?)
v=35-9) )1+ e

wy

4 Control Strategy

It is clear from equation (1c) that for a symmetric body,
no control can affect the value of the component of the
angular velocity ws along the symmetry axis. In fact,
the value of w3 remains constant for all times. Clearly, as
already mentioned, this system is not controllable. There-
fore, if the initial condition ws(0) is not zero, no control
can drive the system to the origin (wy =w2=wa=¢=0=
v =0). Of course, if w3(0) # 0 then it is meaningless to
require ¢ = 0, but we may require a control law such that
w1 =we =¢ =0 =0. This last control corresponds to spin
axis stabilization for a spinning (symmetric) spacecraft
and is of important practical interest. From eguations {8)
notice that w = 0 implies that siné = 0 and sin ¢ = 0,
therefore w = 0 implies # = 0 and ¢ = 0 on M. We
have therefore that w = 0 (with the previous identifica-
tion of the third column of the rotation matrix) implies
that the body-fixed 3-axis (the symmetry axis), is aligned
with the inertial 3-axis (for the 3-2-1 set). However, we
have no a priori information about the relative rotation of
the body about its symmetry axis. That is, stabilization
is achieved about a submanifold ¥ = const. of M. On
this submanifold, the angle ¥ can have any value.

Zero Spin-Rate Case

We now turn our attention to the problem of zero spin
rate, i.e., assume @ priori that w3(0) = 0. Following the
terminology of [7] we refer to this problem as the restricted
stabilization problem. For ws = 0 the restricted space-
craft dynamics are given by the equations

t:); = U (9&)
w2 = u2 (9b)

¢ = wi+wrsingtand (10a)
6 = wycosé (10b)
$ = wasingsecd (10¢)

In this section we present a methodology to construct
feedback control laws for the system of equations (9) and
(10a-10b), which depends on the alternative formulation
of the kinematic etl:la.tions resented in section 3. Asymp-
totic stability of the closed-loop system is easily demon-
strated by Lyapunoy’s direct me:{od. Recalling that ¢
is an ignorable variable for the system (10), in tﬁe subse-
quent analysis we tacitly discard the equation for ¥. The
roblem of also stabilizing ¥ = 0 is more difficult. In
act, in (7] it was shown that any stabilizing feedback
control law of the complete restricted system, i.e., for
(w1,w2,9,0,¥), must be necessarily nonsmooth. In the
same paper a methodology based on the theory of con-
trol of nonholonomic systems {8, 9] was used to construct
such nonsmooth stabilizing control laws. The stabiliza-
tion of the complete system (9)-(10) will be the subject
of a forthcoming paper [16].
Introducing the complex control variable u = u; +iu,
equations (9) and the kinematic equation (7) simplify to

w = u (11a)
W o= % + 2u? (11b)
where (w,w) € CxC. This system of differential equa-

tions is in one-to-one correspondence with the system of
equations (3}—&103—10!)). The system (11) falls within the

more general class of nonlinear systems of the form
¥y = u (12a)
i = f(z,9) (12b)

where f : R" x R™ — R" is smooth, with f(0,0) = 0.
System (12) is a system in cascade form and it is a well-
known result [17) that for systems of this form, if the sub-

. system % = f(z,y) is smoothly stabilizable (regarding y

as a control-like variable), then the extended system (12)
is also smoothly stabilizable. In other words, if in {12) the

subsystem (12b) is smoothly stabilizable, then adding an
integrator does not change this property. We will use this
result in order to derive a.swnitotically stabilizing control
laws for the system (11). We have the following theorems

concerning asymptotic stabilization of the system (11).
Theorem 4.1 The choice of the linear feedback contrel
w = —Kw (13)

where & > 0, globally asymptotically stabilizes (11b).
Proof. With this choice of feedback, the closed-loop sys-
tem becomes .

¥ =—2(1+]ul)w (14)
The positive definite function V : C — R defined by

V(w) = ww = |w}® is a Lyapunov function for (14). In-
deed, differentiating along trajectories of (14) one obtains

V(w) = W + wid
—g(l + |w]*)wd — g(x + wf)ow
—&(1+ Jwl’)|w|* <0

Since V(w) = 0 if and only if w = 0, the closed-loop
system (14) is asymptotically stable. Global asymptotic



stability follows from the facts that these statements hold
for all w € C and V is radially unbounded, i.e., V(w) —

00, for |w] — co. Notice that since V < —&V one, in fact,
guarantees ezponential stability for the system (14) with
rate of decay /2. [ |

Theorem 4.2 The choice of the feedback control law
= —%(w+ww2)— a(w + sw) (18)

with x > 0 and a > 0, globally asymptotically stabilizes
system (11).

Proof. With this choice of feedback, the closed-loop sys-
tem becomes

w = _.g.(w + a:wz) — a(w + Kw) (16a)
. w @ 2

= ¥4 X 16b
w = 3 + Zw ( )

The set £ = {(w, w) € CxC : w+ xw = 0} is a positively
invariant set and a global asymptotic attractor for (16).

To see this, let z 2y + xw. Then the system equations
become

i = -z (17&)
b o= —FwtZ-Zulul+Zuw’  (7H)

La Salle’s theorem guarantees the global asymptotic sta-
bility of (16), if the trajectories of (16), or equivalently of
(17) remain bounded [18]. To this end, let V be the posi-
tive definite function of Theorem 4.1, i.e., let V(w) = |w/|?.
We will show that V is nonincreasing outside a bounded
set that contains the origin; in particular, we claim that

V(w) < 0 on the set P = {we C : |w| > |2(0)|/x}. This
will imply boundedness of solutions of w, hence of (17).
Differentiating along trajectories of (17b) one obtains

V(w)

sl —wfwl* + Z5(1 + |wl’) + Fw(1 +wl’)
—wlwf*—wlwl* + Re(z0)(1 + Jul*)
—wlwf —wlwl* +2l[[(1 + wl?)

IA

where Re(.) denotes the real part of a complex number
and where we made use of the fact that Re(z) < |z| for
all z € C. From (17a) one has that z(¢) = z(0)e~** and
in particular |z(¢)| < |2(0)}. Thus,

V(w) < =slwf’ = slwl* +[2(0)|@](1 + |w|)
=(1 + [w*)lwl(slw] - |2(0)})

For |w| > |2(0)|/% one has V(w) < 0 as claimed. This
completes the proof. |

The previous control law is not the only choice of sta-
bilizing feedback for the system (11). In fact, one has the
following

Theorera 4.3 The choice of the feedback control law
u= —%(u+6)w2) —a(w+ kw) —w(l +|wf®) (18)

with k > 0 and a > 0, globally asymptotically stabilizes
system (11).

Proof. With this choice of feedback, the closed-loop sys-
tem becomes

o = —5w+aw’) - a(w+sw)-w(l +uf’) (19)
-
o = 242y (19b)

Indeed, the positive definite function V : CxC — R
defined by V(w, w) = |w|® + |w + sw|?/2 is a Lyapunov
function for the system (19). Differentiating along trajec-
tories of the system (19), one can show that

V(w,w) = —alw + kv’ - s|lwf’(1 +|vf’) <0

Since V(w,w) = 0 if and only if w = 0 and w = 0, the
system (19) is totically stable. Global as totic
s{abilit (fo ows goxl:l the faycts that the previoty;n!s)ta.te-
ments hold for all (w,w) € CxC and V is radially un-
bounded, i.e., V(w, w) — oo, for ||(w, w)]|] — o0o. In fact,
since V <—pgV, where § = min{2a, x} the system (19) is
globally ezponentially stable with rate of decay 8/2. |

Non-zero Spin-Rate Case

We mention in passing that, surprisingly enouﬁ, the sta-
bilizing control laws given above, can also used to
achieve stabilization about the symmetry axis, even when
the spin rate w; is not zero. In such a case the final state
is a pure revolute motion abont the symmetry axis. Using
(2) and (7) the attitude equations for a symmetric body,
with w3(0) # 0, can be written as

w = =—taiwpwt+u (20a)

¥ = —fwiw+ % + %wz (20b)

Notice first that with the control (13) the subsystem (20b)
is (locally) asymptotically stable; for its linearization has
eigenvalue —x/2 — iwso ’{'n > 0). In fact, one can easily
verify the following two Theorems.

Theorem 4.4 The choice of the feedback control law
w = —Kw (21)
with k > 0 globally asymptotically stabilizes (20b).

Proof. Use the Lyapunov function of Theorem 4.1. In
fact, with this Lyapunov function one can show global
ezponential stability of (20b) with rate of decay /2.

Theorem 4.5 The choice of the feedback control law

% ={awiow+ n(iwsow—-;i—%wz) —a(w+sw) (22)

with K > 0 and a > 0, globally asymptotically stabilizes
system (20).

The proof of Theorem 4.5 traces the steps of the proof
of the ':Fheorem 4.2, and will not be repeated here.

5 Numerical Example

We illustrate the previous ideas with a numerical ex-
ample. The control law given in Theorem 4.2 is used to
stabilize the system of equations (11) about the origin.

The initial conditions are given by w;(0) = 0.75 rad/sec,
w2(0) = —0.5 rad/sec, w3(0) = 0, ¢(0) = 2.5 rad,
8(0) = 0.5 rad and ¥(0) = 0.25 rad. The results with
control law (15) and k = & = 1 are shown in Figs. 1-2.
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Figure 1: Angular velocities w; and ws.
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Figure 2: Eulerian angles ¢ and 8.

6 Conclusions

The problem of stabilization of a symmetric spacecraft
with two gas jet actuators aligned about the principal axes
of equal moments of inertia 1s investigated. Using a new
formulation for the kinematic. equations, asymptotically
stabilizing controls have been derived for the restricted

roblem of spin axis stabilization. The asymptotic stabil-
ity of the closed-loop system is proved by construction of
appropriate Lyapunov functions. The stabilizing control
laws derived are especially simple and elegant. Moreover,
they do not depend on the particular choice of the Eule-
rian angle set, used to describe the attitude orientation in
the inertial space. This provides a great deal of freedom
in the analysis and design of attitude control laws.
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