Real-Time Trail-Braking Maneuver Generation
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Abstract— Trail braking is a high-speed cornering technique
that can, typically, be performed only by an expert driver.
In this paper, we first learn a primitive high-speed cornering
maneuver using a series of demonstrations obtained by solving
the minimum-time cornering problem subject to different
initial conditions. This primitive trajectory indicates that a
typical trail-braking maneuver can be approximated by three
segments, namely, entry corner guiding, steady-state sliding,
and straight-line exiting. Based on this result, we divide a
trail-braking maneuver into three stages. The middle sliding
stage includes a segment of steady-state cornering that can be
utilized to generate such trajectories for a variety of corner
geometries. A flatness-based tracking controller is designed to
generate the entry corner trajectory, and a feedback control
stabilizes the vehicle at the exit.

Keywords: Differential flatness, trajectory learning, trajec-
tory planning, trail-braking.

I. INTRODUCTION

Trail-braking is a technique often used in rally racing,
during which the vehicle is driven at high sideslip angles
during cornering to shave off excess speed. In this pa-
per we investigate real-time generation of a trail-braking
maneuver.

Velenis in [1]-[3] modeled the trail-braking maneuver
and showed that trail-braking can be generated as the
solution of a minimum-time cornering problem subject
to appropriate boundary conditions. Tavernini [4] inves-
tigated minimum-time cornering strategies for a vehi-
cle with different transmission layouts (front-wheel-drive,
rear-wheel-drive and all-wheel-drive) using different road
surfaces, and showed that the minimum-time driving
strategy under low-friction conditions turned out to be
an aggressive high-drift cornering maneuver. Hindiyeh [5]
analyzed the stability of the vehicle under high sideslip
drifting conditions and revealed the existence of unsta-
ble equilibria corresponding to a steady-state cornering
maneuver. The unstable equilibria during steady-state
cornering were also shown by Yi [6], who proposed a
hybrid tire/road model and analyzed the effect of the
longitudinal slip on the lateral stability.

The above papers indicate that trail-braking may be
approximately modeled using a steady-state cornering
process. Nevertheless, most prior work is based on optimal
trajectory optimization techniques and limited work exists
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on trajectory planning and motion control to generate
trail-braking maneuver in real time.

To better understand trail-braking, this paper first gen-
erates a series of demonstrations of trail-braking trajec-
tories by solving the minimum-time cornering problem
subject to several different initial conditions [2]. Based on
these demonstrations, we learn a primitive trajectory us-
ing an iterative expectation-maximization (EM) algorithm,
by utilizing an unscented Kalman filter (UKF) along with
dynamic time warping (DTW) to align the time indexing of
all the demonstrations. The result is a primitive trajectory,
which can be used as the prototype trajectory to follow
during trail-braking. This primitive trail-braking maneuver
indicates the existence of a segment of sustained steady-
state cornering. This observation leads to a decomposition
of trail-braking into three stages, namely, guiding, slid-
ing and exiting. Subsequently, we design a hybrid-mode
control strategy for the three stages separately, using a
combination of linear and nonlinear control techniques.
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Fig. 1: Vehicle model.

II. VEHICLE MODELING

The single-track vehicle model for control design and
trajectory optimization used in this work is shown in
Figure 1. In this figure, X1—O-Y; and Xg - CG - Y
denote the inertial frame and the body frame (fixed
on the vehicle), respectively. Furthermore, V¢, V; and V
denote the velocities at the front and rear wheels and the
vehicle’s center of gravity (CG), and ay, a; and  denote
the sideslip angles of the front and rear wheels and the
CG, respectively. The parameters ¢; and ¢; denote the
distances of the CG to the front and rear axles, f;; (i =ER



and j = x,y) denote the longitudinal and lateral friction
forces at the front and rear wheels, and ¥ and r denote
the yaw angle and the yaw rate of the vehicle, respectively.
Finally, 6 is the steering angle of the front wheel.

The equations of motion of the model can be expressed
in a body-fixed frame with the origin at CG as follows (7]

V= %(nySin(p+fFXCOS(p+fRySinﬁ+fRXCOSﬁ), (1a)

. 1 . .

B= —r+W(fpycosqo—fpxsm(p+fRycosﬁ—fRXsmﬁ),b
(1b)

= Il((fpycoso‘+fFXsin6)£f—fRy€r), (1c)
VA

where ¢ = -6, where m is the total vehicle mass,

I, is the moment of inertia of the vehicle about the

vertical axis through its CG, and the control is chosen

as u=I[0, frx, fRX]T. The lateral tire forces fry and fgry are

calculated by

fiy = Djisin(C;atan(B; a;)), i=F, R, )

where D;,C; and B; are constants, and the tire sideslip
angles are given by
Vsin B+ l¢r (Vsinﬁ—ﬁrr)
Vcosf Veosf /'
III. OPTIMAL TRAJECTORY GENERATION

agp=0— atan( ), aR = —atan

We consider a 90deg cornering with the road geometry
as shown in Figure 2. In this figure S; and S, denote
the lengths of the two straight road segments before and
after the corner, and R, and O denote the radius and
the center of the centerline of the corner, respectively.
The vehicle enters from Point A and exits from Point D
with certain initial and final velocities.
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Fig. 2: Road geometry.

Based on the results of [3] we generate several optimal
minimum-time cornering trajectories by minimizing the
time ¢ for the vehicle to drive from location A to location
D, subject to the constraints

—-d/2<As<d/l2 Yte [t tl, (3)

and for several initial conditions. For instance, by assign-
ing the road geometry parameters S; = Sy =5 [m], Ryef =10
[m], d =2 [m] (see Figure 2), and the fifteen different
initial positions and velocities shown in Table I, the previ-
ous minimization problem can be solved numerically. The
results, for all fifteen trajectories are shown in Figure 3.

TABLE I: Initial conditions.

(9.5,-5), (10,-5), (10.5,-5)
6,7 89, 10

Initial Position A [(m,m)]
Initial Velocity Vg [m/s]

IV. TRAJECTORY LEARNING

In this section we present an algorithm to learn a
primitive trail-braking trajectory from the demonstrations
shown in Figure 3. The algorithm is based on the ap-
proach initially proposed in [8], which assumes that each
demonstration is an independent, noisy observation of
some (unknown) primitive trajectory, along with a possible
time reparameterization.

A. Generative Model

Suppose that we are given M representative demonstra-
tions of length Ny for k=0,1,---,M —1. Each trajectory
is assumed to be a discrete sequence of states x;? and
controls u*, which are composed into the augmented state
vector y¥ =[x¥,uf], j=0,1,---,Ne—1, k=0,1,---,M—1.
We then define the “hidden" target trajectory z* of length
T, which is denoted by z; = [x],u;], t=0,1,---,T—1. The
hidden trajectory z; must satisfy the system dynamics
in (1). After discretization, and assuming some external
noise, yields

=)+ w?, (4a)
Nes1 =1+ w”, (4b)

where w'? ~ .4 (0,2?) and w\” ~ .4 (0,2™) are Gaussian
process noises. The value of 2™ determines the smooth-
ness of u* for the hidden trajectory.
The demonstrations are independently observed from
(4). The observations are therefore given by
y}‘ = Z:f + w;y), (5)

»

where w?’ ~ A4 (0,2%) is Gaussian observation noise.

Here T;? is the time index in the hidden trajectory to which
the observation y;? is mapped. Since r;? are not observed,

we assume the following distribution with parameters d;k

d{‘ if 7k k= s

JH1T Y
k P k_
k k) d, if rj+l—rj_2,
Pl  |T%] = (6)
j+1ltj dk if ok k_g
3 I 7;,-7;=9
0 otherwise,

with T(I]C =0, where Z?:l df =1 and df = 0. The most likely
hidden trajectory is obtained by solving the following



maximization problem

max log P(y;7,d,2"), Y

7,d,2")
where P is the joint likelihood of the observed trajectories
y for the learned parameters 7,d,=".

B. Primitive Trail-Braking Trajectory

After implementing the previous Trajectory Learning
Algorithm we obtain the result shown in Figure 3.

The primitive trajectory in Figure 3 contains a segment
of a circle that is tangent to the inner road boundary,
and the vehicle seems to keep a constant side-slip angle
B during the cornering. This observation leads to the
conjecture that the primitive trajectory includes a segment
of steady-state cornering. Steady-state cornering is charac-
terized by a constant radius R, negotiated at a constant
speed V5, constant yaw rate r% = g—::, and constant
side-slip angle % [7]. Based on these results, we divide
the trail-braking trajectory into three segments. The first
segment allows the vehicle to complete the transition from
straight-line driving to steady-state cornering. Before the
vehicle enters the corner, the vehicle gradually changes
its velocity using certain steering and accelerating/braking
operations, until it reaches the target steady state near the
entry of the corner. The vehicle then maintains steady-
state cornering during the second segment, until it gets
(close) to the exit of the corner. Finally, in the last segment,
the vehicle leaves steady-state cornering and is steered
back to straight-line driving after the vehicle exits the
corner.

Learned Trajectory
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Fig. 3: Multiple demonstrations and the learned primitive
trajectory.

We generate a high-speed, high-sideslip trail-braking
maneuver using this idea. To this end, we first need to
calculate the equilibrium for steady-state cornering. The
main problem occurs after we obtain the target steady
state since one has to guide the vehicle from a certain
initial condition to the target steady state when the vehicle
enters the steady state corner. This task is challenging,
since we need to find a feasible trajectory, such that
the vehicle reaches the target steady-state exactly when

it enters the corner. In order to solve this problem, in
this paper we take advantage of the differential flatness of
the vehicle dynamics to design the corresponding tracking
control.

V. DIFFERENTIALLY FLATNESS TRAJECTORY GENERATION

It has been previously shown [9]-[12] that the single-
track vehicle model is differentially flat [13], [14]. Here
we take advantage of the differential flatness property to
design the trajectory to be followed, but we take into
account the road condition and the steering capacity of
the vehicle.

A. Differential Flatness of Vehicle Model

In this section we show that the equations (1) of the
vehicle model are differentially flat with respect to a
particular output. This property is stated in Theorem 5.1.

Theorem 5.1: The vehicle model in (1) is differentially
flat with respect to the following output [10]
nl_ ‘ Vcosf . ®
V2 Vsinf - (Izlméf)r

Proof: Recall from (2) that the lateral tire forces fiy
(i =F,R) are smooth functions of the sideslip angles a; at
the front and rear wheels, respectively. We can then derive
the state of the system in (1) in terms of the flat output
in (8) as follows

I,r
V= 2

I
mlsy, + Zr) ©)

2 —_—
)7, ,B—atan( e

2
y1+(J/2+m€f

where r = r(y1,¥2,¥2) is given by solving the following

implicit equation,

(mlgl, — I)r — mlsy,
megy,

Dgsin (CRatan(BRatan(
. (10)
mle(y2+11) A o

- W =g, ¥2,¥2,1)=0.

Equations (9)-(10) give the expressions of the state x in
terms of the flat output in (8). The control u = [§, fgx, fo]T
can be recovered from (8) by solving the following equa-
tions

Jey(6, 11, y2, 72) c0s 8y + frxsind g — L (y1, y1, y2, V2, j2)
_fRy(yl»J/Z;yz)ﬁr = O)

I
m(j’l = Yor(y1, Y2, ¥2) — m—zlfrz(J/bJ/zr}'/z)) - frx

+ fey (8, ¥1,¥2, ¥2) siné — frxcosd =0,
r(fFX!fRX) = 07

where the rear wheel lateral tire force is given by

yomle+ 11 (01, Y2, y2)méy
ff+€r ’

and where I'(fgx, frx) is a force distribution function re-
lated to the specific drive type of the vehicle. The choice of
I'(frx, frx) depends on the for drive type (All-Wheel-Drive,
Front-Wheel-Drive, Rear-Wheel-Drive). Here we assume a
RWD and hence we set frx = 0. We can then determine

Try(r1,y2,72) = (11)



the remaining control variables 6 and fzx by solving the
following equations

Jey(6, y1, 2, 72) cos64s — L7 (y1, Y1, Y2, V2, 2) (12a)
— fry(r1, y2, 2)€, = 0, (12b)

. . I, , .
m(yl—yzr(ybyz,yz)—m—gfr (yl,yz,yz))—fo (12¢)

and we have all controls as functions of the flat outputs
and their derivatives. [ |

VI. TRAJECTORY PLANNING

As mentioned earlier, based on the trajectory learning
result in Section IV, we assume that a trail-braking ma-
neuver consists of three stages: 1) An entry stage before
the vehicle enters the corner; 2) a sliding stage where the
vehicle passes through the corner at a steady-state; and
3) an exiting stage after the vehicle leaves the corner. We
consider the following scenario of high-speed, high-slip
cornering maneuver, as shown in Figure 4.

Y ;
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Fig. 4: Road geometry and trail-braking trajectory.

Figure 4 shows the feature of the “late apex”, where the
vehicle exits the corner next to the inner edge of the road.
As shown in this figure, the vehicle postpones the tangent
point P to the second half of the corner and removes the
inner/outer constraint lines. The steady-state cornering
begins from B, passes through P and ends up at C. We
introduce /1,---,/4 to describe the position and length
of the arc BPC. The angles /1 and /4 denote the vehicle’s
late entering and early exiting positions of the steady-state
cornering.

We compute the steady-state of the vehicle x% =
[(Vss, B, r*1T having the desired cornering speed VS or
the desired sideslip angle 8% following [7].

A. Guiding Trajectory

In order to determine a feasible trajectory of the vehicle
from A to B, we claim that the trajectory must be designed
to satisfy equation (10). To clarify the idea, let us assume
that one has designed a trajectory x(¢) = [V(8), B(1), r()]T,

t € [ty, ], and has calculated the flat outputs y;(#) and
¥2(¢) using the trajectory x(¢) following (8). However, it
is not possible to recover x(t) = [V(£),B(t),r()]T using
the flat outputs y;(f) and y»(f), unless x(¢) is designed
to satisfy equation (10).

We summarize this condition in Proposition 6.1.

Proposition 6.1: A trajectory defined by x(f) =
[V(t),ﬁ(t),r(t)]T, t € [fy, ], can be recovered from
the output in (8) if and only if y;(#), y»(#) and r(f) satisfy
equation (10).

Proof: The proof is straightforward and is omitted. W

A feasible trajectory from A to B can then be designed
as follows: First, a path is computed using purely geomet-
ric methods [15]. Specifically, let the coordinate X(¢#) be a
function of Y () and suppose the path X(Y) is sufficiently
smooth (i.e., a polynomial function). Next, the direction of
the velocity is defined by the tangential of the path at each
point. We assume that Y (#) is smooth and the velocity
V(1) is determined by V(1) = \/1+ (0X/dY)?Y (£). Accord-
ing to Proposition 6.1, w(f) must satisfy the boundary
conditions ¥ (t=0) =y, Wt =1) =y, W =0) =1,V (t=
tp) = r% and the nonlinear constraint g(y(t)) =0 where g
was defined in (10).

VII. CONTROL DESIGN

A switching control is designed to achieve the tasks for
the three different stages. In the guiding stage, a tracking
controller is designed such that the vehicle is driven to
reach the desired steady-state at the entry of the corner.
Afterwards, a stabilizing controller is designed such that
the vehicle follows the steady-state along the desired
path. This stabilizing controller that keeps the vehicle
along the arc BPC can be computed using standard
methods (i.e., LQR theory). In the exiting stage, the vehicle
leaves the corner and switches to a new control mode
depending on the specific task. In this paper we design
a state feedback controller that aligns the posture of the
vehicle to be parallel with the road in the exiting stage.
This exit controller aims at stabilizing the vehicle along
the straight line. This controller can be designed using
standard stabilization methods about the new straight-
line equilibrium X% = [Vss, ﬁss,fss]T = [V%5,0,0]T, where
VSS takes the value of the exit velocity of the vehicle after
the corner. In order to align the vehicle to be parallel with
the road, we include a target yaw angle 9% into the state
vector, that is, x% = [V*%,0,0,y%]".

In this paper we therefore only focus on the control
design for entry, guiding stage. That is, we consider
only the design of the tracking controller that drives the
vehicle from A to B following the trajectory designed in
Section VI-A. To this end, let us denote the desired flat
output as y4(#) and denote the current output from the
plant as y(t). The tracking error is e(f) = y(t) — y4(¢) and
the accumulated tracking error is {(f) = fot e(t) dt+{y. The
following design drives {(¢),e(t) — 0 as t — oo with proper



choices of A and v,

é1=-Ae1— A0y,

éy=—viér—Vvoer—v3(y.

(13a)
(13b)

The values of A and v can be determined so that the error
dynamics is asymptotically stable. It follows from (13) that

(14a)
(14b)

. .d
Y=y —he -0,

.. ..d .

Vo =735 —vié2—va2e2—v3(y,

and the control u is obtained by solving the following
equations:

Lryniw =y, Liy;(xu = o, (15)

The (local) solvability of equations in (15) is guaranteed
following the implicit function theorem if and only if the
following conditions are satisfied

L, Vsin (0 fry/0V) + I, cos B(0 fry/0B) + mV £¢(0 fry/0r)

m2 (%
V2cos B 40 16)
li+ 0y ’
Off
frysind — ﬁcosé;zéO. a7
06
yd e Tracking | 7,7, State u Vehicle y
@ controller " feedback "] model

X, fRy, ny

Fig. 5: Scheme of flatness based vehicle dynamics control.

One can refer to [10] for more analysis on the solvability
of (15). The scheme of the controller design can be shown
in Figure 5.

VIII. RESULTS AND ANALYSIS

In this section we implement the proposed control
architecture and analyze the results. Different trail-braking
maneuvers are generated for different corner geometries.

A. Trajectory and Controller Design

We first calculate the equilibrium for the steady-state
cornering. Table II shows the equilibria for steady state-
cornering with different speeds.

TABLE II: Equilibrium for steady-state cornering.

1 2 3 4 5 6 7 8
VS [m/s] 5 8.5 9.4 | 108 | 11.9 | 12.1 | 13.9 15
% [deg] -28 | -30 | -20 | -20 | -28 | -20 | -23 | -32
rS [deg/s] | 11.3 | 48.7 | 35.9 | 30.9 | 34.1 | 27.7 | 26,5 | 28
R% [m] 25.4 10 15 20 20 25 30 | 30.7

A feasible trajectory that includes the target steady-
state cornering process is designed following the approach
of Section VI. In order to demonstrate the proposed
trajectory planning and controller design, we take the

first equilibrium in Table IT and use the segmentation in
Figure 4, for instance. The radius Ry of the corner is 10
[m], and the straight line segments have lengths S; =20
[m] and S, =15 [m]. The distance d between the inner
and outer constraints is 2 [m].

The plots in Figure 6 show that the desired trajectories
and the simulated trajectories agree well with each other.
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E 20 — Simulated Path
S 101 q
0 . . . . .
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Fig. 6: The desired and simulated trajectories.

Since the system is differentially flat, the control u =
16, fax]T (fix = 0 and hence omitted) to achieve the desired
trajectory can be recovered from the designed flat output
by solving equations (12). The calculated control with the
simulation result is shown in Figure 7.

20 Recovered § | 7
— Simulated §

-20 b

0 [deg]

0 0.5 1 15 2 2.5 3 3.5 4
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&
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0 0.5 1 15 2 2.5 3 35 4

Time [ sec]

Fig. 7: The desired and simulated controls.

B. Trail-Braking Trajectory Generation

In this section we generate trail-braking trajectories for
a variety of corner geometries. We use the second and
the third equilibria in Table II for steady-state cornering
to achieve a high-speed, high-slip sliding maneuver.

The road geometry is defined using the parameters in
Table III. It is worth mentioning that the other equilibria
in Table II have steady-state cornering radius R%® > 20 [m],
which seems too large and is not convenient to use for
the road geometry in Table III, especially when the corner



T T T
desired path
3B simulated path | |

10+ 1

ok I I I I I I I W
-30 -25 -20 -15 -10 5 0 5 10 15

X[m]

Fig. 8: Switching-mode control for steady-state cornering.

TABLE III: Road and trail-braking trajectory setup.

Road S1 [m] Sy [m] Ryef [m] D [m] Corner [deg]
geometry 15 15 10 5 60/90/120/180

Initial V [m/s] | B [deg] r [deg/s] | (X,Y) [(m,m)] v [deg]
condition 15 0 0 (Ryef,—S1) 90

angle is larger than 90 deg. For trail-braking with different
corner angles, Table III provides appropriate choices of
the equilibria and the angles /1,...,/4 that determine
the geometry of different trail-braking trajectories. We
plan trajectories for different corner angles and implement
the proposed switch-mode controller accordingly. The
planned and simulated trajectories are shown in Figure 9.

)

Y(m]

20 15 10 5 10 15 Tas 10 5 10 15

) o
X[m] X(m)

Fig. 9: Trail-braking maneuver generation for different
road geometries.

These figures show the computed trail-braking trajec-
tories for 60 deg, 90 deg, 120 deg and 180 deg cornering,
respectively. In each figure, the simulated trajectory agrees
well with the planned trajectory.

IX. CONCLUSION

Trail-braking is a high-speed, high-slip cornering tech-
nique often used by expert rally racing drivers. This
paper provides a methodology to generate trail-braking

maneuvers in semi-analytic form. We first use a trajectory
learning technique to find a primitive trajectory that
captures the “essence” of a trail-braking maneuver, using
a series of trail-braking demonstrations. Based on this
primitive trajectory, we segment the trail-braking trajec-
tory into three stages, namely, the entry, sliding and exiting
stages, and we show that the middle the sliding stage
includes a segment of steady-state cornering. Based on the
existence of steady-state equilibria and the fact that the
vehicle dynamics are differentially flat, we then develop
a switching-mode control for each stage using different
control techniques to generate trail-braking.
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