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Abstract— Vehicle modeling is an essential part of controller
design and validation. This is especially true for model-based
control design approaches, such as model-predictive control
(MPC), which require an accurate model for predicting the
vehicle motion. In this paper we propose a new adaptive joint-
state unscented Kalman filter (JUKF) to estimate the unknown
vehicle parameters using experimentally collected data. We test
the proposed algorithm using three nonlinear vehicle models of
increased fidelity: a single-track model, a double-track model
and a full 11-dof vehicle model. Simulation results validate the
proposed algorithm.

I. INTRODUCTION

Several vehicle models can be used to represent a vehi-
cle’s behavior and help with controller implementation and
testing. Such vehicle models are important for the design of
advanced control algorithms related to vehicle’s active safety.
Many models have been proposed for studying the vehicle
dynamics and for investigating the handling characteristics
of vehicles. Examples include the single track model, the
double track model, and the full vehicle model [1]–[4].

The values of the parameters of each vehicle model are
critical for accurately predicting the behavior of the vehicle
under various operating regimes. The most commonly used
techniques for parameter estimation include least-squares
fitting [5], robust techniques [5], [6], and various Kalman
filtering techniques [5], [7]. Among these, Kalman filtering
is especially suitable for problems where the measurements
are collected in a sequential manner.

The extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) are probably the most popular filters
used for system identification of nonlinear systems. Never-
theless, they can only achieve good performance under some
prior knowledge including: 1) an accurate system model,
2) complete information of noise statistics, and 3) properly
selected initial conditions, all of which may be either not
accurate or not available in practice [8]. A commonly used
approach to solve these problems is to make the Kalman fil-
ters work adaptively, by dynamically modifying the filtering
algorithm using various schemes [9], [10].

The adaptive limited memory filter (ALMF) in [10] es-
timates the process and observation noise statistics on-line,
based on the past state estimations and observations. This
algorithm improves the state estimation performance at little
computational expense. Nonetheless, the ALMF was derived
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using a linear system model, and it has not been validated
in parameter estimation applications, at least as far as the
authors know. This paper builds on the work in [10], and
develops a new adaptive limited memory unscented Kalman
filter (ALM-UKF) for nonlinear applications. We apply the
ALM-UKF to estimate the vehicle model parameters for
three different vehicle models using both simulation data and
experimental data.

II. VEHICLE MODELING

In this section, we describe the three vehicle models used
in this work, namely, the single-track model, the double-track
model and a full 11-dof vehicle model [1]–[4].

A. Single-Track Model
The single-track model takes into consideration the longi-

tudinal and lateral displacement, as well as the yaw motion
of the vehicle, as shown in Fig. 1.
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Fig. 1. Single-track vehicle model.

We use XI − O − YI and XB − CG − YB to denote the
inertial frame fixed on the ground and the body frame fixed
on the vehicle, respectively. The equations of motion of the
model can be expressed in a body-fixed frame with the origin
at CG as follows [1]:

V̇x = (fFx cos δ − fFy sin δ + fRx)/m+ Vyψ̇, (1a)

V̇y = (fFx sin δ + fFy cos δ + fRy)/m− Vxψ̇, (1b)

ṙ =
(
(fFy cos δ + fFx sin δ)�f − fRy�r

)
/Iz, (1c)

where Vx and Vy are the components of V along the XB and
YB directions, respectively; m is the total mass, and Iz is the
moment of inertia of the vehicle about the vertical axis. fij
(i = F,R and j = x, y) denote the longitudinal and lateral
friction forces at the front and rear wheels, ψ denotes the
yaw angle, and δ is the steering angle of the front wheel.

B. Double-Track Model
The double-track model takes into consideration the longi-

tudinal, lateral and yaw motion of the vehicle, but considers



the load difference between the left and right wheels arising
from the lateral load transfer. We use fi,j,k (i = L,R,
j = L,R and k = x, y) to denote the longitudinal or lateral
friction force for each wheel, respectively. The vehicle’s
equations of motion are then given by:

V̇x =
(
(fLFx + fRFx) cos δ − (fLFy + fRFy) sin δ + fLRx

+ fRRx

)
/m+ Vyψ̇, (2a)

V̇y =
(
(fLFx + fRFx) sin δ + (fLFy + fRFy) cos δ + fLRy

+ fRRy

)
/m− Vxψ̇, (2b)

ṙ =
((

(fLFy + fRFy) cos δ + (fLFx + fRFx) sin δ
)
�f

− (fLRy + fRRy)�r

)
/Iz. (2c)

C. Full Vehicle Model
The full vehicle model considers the dynamics of the

sprung and unsprung mass of the vehicle separately. The
equations of motion for the total mass are the same as
(2a)-(2c) for the double-track model. We also take the air
resistance into account and modify (2a) as follows

V̇x =
(
(fLFx + fRFx) cos δ − (fLFy + fRFy) sin δ + fLRx

+ fRRx

)
/m+ Vyψ̇ − CDρairAV 2

x /2, (3)

where CD is the air resistance coefficient, ρair is the air
density, and A is the frontal area of the vehicle. The vertical
translation is accounted for by a riding model as shown in
Fig. 2. The rolling and pitching model are given in Fig. 3.
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Fig. 2. Riding model.

In Fig. 2, Ki and Ci (i = f, r) denote the spring stiffness
and the damping coefficient of the suspension system related
to each wheel, mi,tire (i = f, r) denotes the mass of the front

and rear tire, respectively, ms is the sprung mass, and φ̇ and
θ̇ are the rolling and pitching rate, respectively.
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Fig. 3. Rolling and pitching model.

Fig. 3(a) shows the rolling motion arising from the lateral
acceleration and the gravity center offset from the rolling
center. The parameters hs and hc are the heights of the

sprung mass center and the rolling center (CR), respectively.
Fig. 3(b) shows the pitching motion arising from the lon-
gitudinal acceleration and the gravity center offset from the
pitching center (CP) that is assumed to be on the ground.
The dynamical equations of the vertical, rolling and pitching
motion of the sprung mass are given by

V̇ s
z =

(
− 2(Kf +Kr)θ − 2(Cf + Cr)V

s
z + 2(�fKf − �rKr)φ

+ 2(�fCf − �rCr)θ̇
)
/ms, (4a)

θ̈ =
(
2(�fKf − �rKr)z

s + 2(�fCf − �rCr)V
s
z − 2(�2fKf + �2rKr)θ

− 2(�2fCf + �2rCr)θ̇ +msghs sin θ +msas
xhs cos θ

)
/IPy , (4b)

φ̈ =
(
− w2

f Kfφ/2− w2
f Cf φ̇/2− w2

rKrφ/2− w2
rCrφ̇/2

+msg(hs − hc) sinφ+msas
y(h

s − hc) cosφ
)
/IRx , (4c)

where wi (i = f, r) denote the front and rear track , respec-
tively; asx and asy are the longitudinal and lateral acceleration

of the sprung mass center in the body-fixed frame, and IRx
and IPy are the moments of inertia of the sprung mass about
the rolling axis and the pitching axis, respectively.

D. Tire Force Model
The tire slip is defined by the non-dimensional relative

velocity of each tire with respect to the road, as follows

sijx =
Vijx − ωijxRj

ωijxRj
, sijy =

Vijy

ωijxRj
, (5)

where i = L,R and j = F,R. Vijk (k = x, y) is the tire
frame component of the vehicle velocity of each tire. The

total slip of each tire is defined by sij =
√

s2ijx + s2ijy . The

total friction coefficient related to each tire is calculated using
Pacejka’s “magic formula” (MF) as follows [1], [3]:

μij = D sin
(
Catan

(
BSE − E

(
BSE − atanSE

)))
+ Sv

(6)

where B,C,D,E are the stiffness, shape, peak and curvature
factors, respectively; SE = sij − Sh, where Sh is the
horizontal shift. Sv is the vertical shift. The tire friction force
components are given by

fijk = −sijk
sij

μijfijz , i = L,R; j = F,R; k = x, y. (7)

where fijz is the normal load on the corresponding tire and
can be calculated following [1]. We do not show the details
on the calculation for fijz due to lack of space.

III. UNSCENTED KALMAN FILTER

The joint-state UKF includes the unknown parameters into
the original state vector and estimates the new augmented
state. The state and the noise are assumed to be Gaussian
random variables. Recall that for a system given by

xk+1 = f(xk, uk) + wk, yk = h(xk, uk) + vk, (8)

where wk ∼ N(q,Q) and vk ∼ N(r,R) are Gaussian
process and measurement noise, respectively, the EKF prop-
agates the Gaussian random variable xk by linearizing the
nonlinear state transition (observation) function f : R

n ×



U �→ R
n (h : Rn × U �→ R

m) with the Jacobian matrix at
each time step k [11]. Instead of an EKF, this paper adopts a
UKF filter since: a) the UKF propagates the Gaussian random
variable through a nonlinear function more accurately than
the EKF; and b) The UKF avoids calculating the Jacobians
that may be too cumbersome for highly nonlinear systems.

A. Standard UKF

The UKF is based on the unscented transformation (UT),
and avoids calculating the Jacobian matrices at each time
step. Assuming an L-dimensional Gaussian random variable
x with mean x̂ and covariance Px, to calculate the statistics
of y = g(x), we select 2L+1 discrete sample points {Xi}2Li=0

which are propagated through the system dynamics. The
UKF redefines the state vector as xa

k = [xT
k , w

T
k , v

T
k ]

T, which
concatenates the original state and noise variables, and then
estimates xa

k recursively [12].

B. Adaptive Limited Memory UKF

We propose a new estimation algorithm for nonlinear
systems called Adaptive Limited Memory UKF (ALM-
UKF). First, recall that the adaptive Kalman filter algorithm
[10] adjusts the mean and the covariance of the noise on-
line, which is expected to compensate for time-varying
modeling errors. Define the set of unknown time-varying
hyperparameters for the Kalman filter corresponding to the
noise statistics at the ith time step, as Si � {qi, Qi, ri, Ri}.
Si is estimated simultaneously with the system state and
parameters. Since an optimal estimator for Si does not exist,
and many suboptimal schemes are either too restrictive for
nonlinear applications or too computationally demanding
[8], [13], this paper adopts the adaptive limited memory
algorithm in [10], with the following two extensions: a)
the algorithm is developed for a nonlinear application (i.e.,
UKF); b) we wish to estimate the unknown parameters of
the system along with the state, instead of just the system
state. In the following, we assume that Si is constant and is
denoted by S = {q,Q, r, R}.

For the observation noise statistics r and R, we consider
the nonlinear observation at time k, which is given by yk =
h(xk, uk) + vk. Since the true value of xk is unknown, vk
is approximated by

rk = yk − ĥ(xk, uk), (9)

where rk represents a sample of the observation noise v at
time k, and

ĥ(xk, uk) =
2L∑
i=0

W
(m)
i h(X x

i,k, uk) � ĥk. (10)

We define a new random variable ξ ∼ (r, Cr), and assume
that there are N samples rk (k = 1, . . . , N ), such that
the rk’s are N empirical measurements for ξ. An unbiased
estimator for r can be given by the sample mean

r̂ =
1

N

N∑
k=1

rk, (11)

where the term “unbiased” implies that E[r̂] = E[ξ] = r. An
unbiased estimator for the covariance of ξ can be given by

Ĉr =
1

N − 1

N∑
k=1

(rk − r̂)(rk − r̂)T, (12)

where the term “unbiased” implies E[Ĉr] = E[(ξ − r)(∗)T].
For simplicity, in this paper we use (∗) to represent repeated
terms when necessary. Since yk = h(xk, uk)+vk, it follows
from (9) that

rk = h(xk, uk)− ĥk + vk. (13)

We can therefore calculate the covariance of ξ as follows

E[(ξ − r)(∗)T] = 1

N

N∑
k=1

E[(rk − r)(∗)T]

=
1

N

N∑
k=1

E[(h(xk, uk)− ĥk + vk − r)(∗)T]

=
1

N

N∑
k=1

(
E
[
(h(xk, uk))(∗)T

]− (ĥk)(∗)T
)
+R. (14)

where

E[(h(xk, uk))(∗)T] =
2L∑
i=0

W
(m)
i (h(X x

i,k, uk))(∗)T. (15)

Note that we assume that xk and vk are independent in (14).
An unbiased estimate of R is given following (12) and (14):

R̂ =
1

N − 1

N∑
k=1

(
(rk − r̂)(∗)T − N − 1

N

(
E[(h(xk, uk))

(∗)T]− (ĥk)(∗)T
))

. (16)

For the process noise statistics q and Q, we consider the
nonlinear state propagation at time k, which is given by xk =
f(xk−1, uk−1)+wk−1. Since the true values of xk and xk−1

are unknown, wk−1 is approximated by

qk = x̂k − f̂(xk−1, uk−1), (17)

where qk represents a sample of the process noise w at time
step k − 1, and

f̂(xk−1, uk−1) =

2L∑
i=0

W
(m)
i f(Xx

i,k−1, uk−1) � f̂k−1. (18)

We define a new random variable ζ ∼ (q, Cq), and assume
that there are M samples qk (k = 1, . . . ,M ), where the qk’s
are M empirical measurements for ζ. An unbiased estimator
for the mean value of ζ is given by the sample mean

q̂ =
1

M

M∑
k=1

qk. (19)

An unbiased estimator for the covariance of ζ is given by

Ĉq =
1

M − 1

M∑
k=1

(qk − q̂)(qk − q̂)T, (20)



such that E[Ĉq] = E[(ζ − q)(∗)T]. We then calculate the
covariance Q by the following equation

E[(wk−1 − q)(∗)T] = E[(wk−1 − qk + qk − q)(∗)T]

=
1

M

M∑
k=1

E

[(
(xk − x̂k)− (f(xk−1, uk−1)− f̂k−1) + (qk − q)

)(
∗
)T]

=
1

M

M∑
k=1

(
E[(f(xk−1, uk−1))(∗)T]− (f̂k−1)(∗)T − Pk

)
+ E[Ĉq ],

(21)

where

E[(f(xk−1, uk−1))(∗)T] =
2L∑
i=0

W
(m)
i (f(Xx

i,k−1, uk−1))(∗)T. (22)

Then Q can be estimated unbiasedly following the equations
(20)-(21),

Q̂ =
1

M − 1

M∑
k=1

(
(qk − q̂)(∗)T +

M − 1

M

(
E[(f(xk−1,

uk−1))(∗)T]− (f̂k−1)(∗)T − Pk

))
. (23)

Equations (11), (16), (19) and (23) provide unbiased esti-
mates for r, R, q and Q, which are based on N observation
noise samples and M process noise samples, respectively. All
samples rk and qk are assumed to be statistically independent
and identically distributed. We summarize the algorithm of
the Adaptive Limited Memory UKF based on equations
(9)-(23) in Algorithm I, where α, β, κ and λ are the UT
parameters [12].

C. Experimental Platform
In the following, we use data collected from a fifth-scale

Auto-Rally vehicle (see Fig. 4) and estimate the unknown
parameters of all three of the vehicle models. Table I (bot-
tom) summarizes the unknown parameters to be estimated
for the three different vehicle models.

Fig. 4. The test track (left) and the Auto-Rally vehicle model (right).

The fifth-scale Auto-Rally vehicle is driven by two rear
wheels. The known parameters of the Auto-Rally vehicle
model are given in Table I (top).

D. Parameter Estimation
We use a joint-state UKF to estimate the unknown param-

eters of the system. For the system given in (8), we introduce
the following dynamics for the parameter vector p,

pk+1 = pk + wp
k , (24)

where wp
k ∼ N(qp, Qp) is Gaussian process noise. We define

the augmented state as xa = [xT, pT]T. It then follows from

(8) and (24) that

xa
k+1 = F (xa

k, uk) + wa
k, yk = H(xa

k, uk) + vk, (25)

where wa
k = [wT

k , (w
p
k)

T]T.

Algorithm I: Adaptive Limited Memory UKF
0: UT parameters setup:

λ = α2(L+ κ)− L

W
(m)
0 = λ/(L+ λ)

W
(c)
0 = λ/(L+ λ) + 1− α2 + β

W
(m)
i = W

(c)
i = 0.5/(L+ λ), i = 1, . . . , 2L

γ =
√
L+ λ

1: Initialize with:
x̂0 = E[x0], q̂0 = E[q0], r̂0 = E[r0]

P0 = E[(x0 − x̂0)(∗)T]
Q0 = E[(q0 − q̂0)(∗)T]
R0 = E[(r0 − r̂0)(∗)T]
x̂a
0 = E[xa

0 ] = [x̂T
0 q̂T0 r̂T0 ]T

Pa
0 = E[(xa

0 − x̂a
0)(∗)T] =

⎡
⎢⎣

P0 0 0

0 Q0 0

0 0 R0

⎤
⎥⎦

2: Sigma-point calculation and prediction:

Xa
k−1 = [x̂a

k−1 x̂a
k−1 + γ

√
Pa
k−1 x̂a

k−1 − γ
√

Pa
k−1]

Xx
k|k−1

= f(Xx
k−1, uk−1) + Xw

k−1

x̂−
k =

2L∑
i=0

W
(m)
i Xx

i,k|k−1

P−
k =

2L∑
i=0

W
(c)
i (Xx

i,k|k−1
− x̂−

k )(∗)T

Yk|k−1 = h(Xx
k|k−1

, uk−1) + X v
k|k−1

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1

3: Observation noise estimation (k ≥ N):
rk = yk−1 − ĥk−1

Γk =
2L∑
i=0

W
(m)
i (h(Xx

i,k−1, uk−1))(∗)T − (ĥk−1)(∗)T

r̂k = r̂k−1 + 1
N
(rk − rk−N )

Rk = Rk−1 + 1
N−1

(
(rk − r̂k)(∗)T − (rk−N − r̂k)(∗)T+

1
N
(rk − rk−N )(∗)T + N−1

N
(Γk−N − Γk)

)

4: Measurement update:

Pykyk =
2L∑
i=0

W
(c)
i (Yi,k|k−1 − ŷ−k )(∗)T

Pxkyk =
2L∑
i=0

W
(c)
i (Xx

i,k|k−1
− x̂−

k )(Yi,k|k−1 − ŷ−k )T

K = PxkykP
−1
ykyk

x̂k = x̂−
k +K(yk − ŷ−k )

Pk = P−
k −KPykykKT

5: Process noise estimation (k ≥ M):
qk = x̂k − f̂k−1

Πk =
2L∑
i=0

W
(m)
i

(
f(Xx

i,k−1, uk−1)
)( ∗ )T − (f̂k−1)(∗)T − Pk

q̂k = q̂k−1 + 1
M

(qk − qk−M )

Qk = Qk−1 + 1
M−1

(
(qk − q̂k)(∗)T − (qk−N − q̂k)(∗)T+

1
M

(qk − qk−N )(∗)T − M−1
M

(Πk−M −Πk)
)

Note: xa = [xT wT vT]T, Xa = [(Xx)T (Xw)T (X v)T]T.

It is noticed that R̂ and Q̂ in (16) and (23) may become
negative definite during the process of the implementation
(this is also mentioned in [10]). This paper calculates the
nearest positive definite matrices of R̂ or Q̂ when negative



eigenvalues of R̂ or Q̂ are observed, such that a symmetric
positive definite matrix nearest to R̂ or Q̂ in terms of the
Frobenius norm can be obtained [14].

It is worth mentioning that the artificial Gaussian process
noise wp

k in (24) is used to change the parameter p when the
UKF is running. However, if the value of wp

k is large, the
parameter p will be changed by a large amount at each time
step. This condition may further cause the filter to diverge,
since the parameterized vehicle models in Section II are
sensitive to p and may thus become unstable for unreasonable
values of p. We addressed this problem by rescaling the
diagonal entries of Qp to be some small positive values at
each time step. Other discussions on the numerical instability
problems of the UKF can be found in [10], [14].

IV. RESULTS AND DISCUSSION

In this section we implement the proposed filter, show and
validate the results from the parameter estimations using the
standard UKF and the ALM-UKF, respectively.

A. Standard UKF
We first implemented the standard joint-state UKF using

the three different vehicle models in Section II, respectively.
The hyperparameters of the filter are critical for the filter
design, especially the process noise covariance Q [15]. In
this section, we tune the diagonal elements of these matrices
recursively, until the parameterized vehicle model shows
satisfactory simulation results.

We selected 113 seconds of experimental data of the Auto-
Rally vehicle. The first 100 seconds data were used to tune
the hyperparameters and estimate the vehicle parameters,
and the remaining 13 seconds (a complete cycle around the
testing track) were used to validate the results. Fig. 5 shows
the estimates for several selected states of the system for
the single-track model. It can be seen that the estimates of
the states agree well with the data. The results for the other
vehicle models were similar and hence are omitted.
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Fig. 5. State estimation for the single-track model using JUKF.

TABLE I

KNOWN / UNKNOWN VEHICLE MODEL PARAMETERS.

m[kg] 21.5 total mass ms[kg] 18.03 sprung mass
mf [kg] 0.84 front wheel mass mr[kg] 0.89 rear wheel mass
wf [m] 0.44 front track wr[m] 0.46 rear track
L[m] 0.57 wheel base R[m] 0.095 wheel radius

Tire forces model B,C,D,E, Sh, Sv

Single/Double-track model Iz, �f , h, g
∗
s

Full vehicle model Iz, �f , h, g
∗
s , CD, I

R
x , IPy ,Kf ,Kr, Cf , Cr, h

c

* gs is the gear ratio defined by the steering command divided by δ

Next, we validated the estimated parameters in simulation.
This was done in order to ensure that the parameters we
obtained were able to satisfactorily reproduce the data, hence
accurately predicting the vehicle’s motion in practical appli-
cations. Fig. 6 shows the simulated trajectories for different
vehicle models configured with the estimated parameters.
The results in Fig. 6 indicate that the larger the number of
degrees of freedom (DoF) of the model, the more accurate
the results and the better the agreement with data.
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Fig. 6. Simulation results of the estimated vehicle models using standard
UKF.

The process of manually tuning the hyperparameters of
the UKF one-by-one until we achieve good performance is
time consuming, and can be done only off-line.

B. Adaptive Limited Memory UKF
Instead of tuning the noise, we implemented the ALM-

UKF to find the suboptimal estimation of the noise statistics
on-line, during which the augmented-state and the noise
are estimated simultaneously. Both simulation data collected
using CarSim and experimental data collected with the Auto-
Rally vehicle were used to validate Algorithm I. The noise
samples at each time step k are from the estimation based
on the last 10 seconds of data (defined by N and M in
Algorithm I).
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Fig. 7. Convergence of the vehicle parameters along with the estimation
process.

The estimation of the states (i.e., the velocities, yaw
angle and positions) is not difficult. We thus only show the



estimation results of the unknown vehicle parameters. We
implemented the adaptive limited memory joint-state UKF
(ALM-JUKF) to estimate a full vehicle model’s parameters
using the Auto-Rally experimental data. Fig. 7 shows the
time trajectories of several parameters (see Table I) during
the estimation process, where all the parameters converge
fast and get stabilized after about 20 seconds.
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Fig. 8. Simulation results of the estimated vehicle models using ALM-
JUKF.

Since CarSim provides a complete full-scale vehicle model
and data from the simulation using CarSim show little
irregular noise, the ALM-JUKF was also implemented using
simulated data for validation purposes. In Fig. 8, we show
the estimated vehicle parameters corresponding to the Car-
Sim vehicle model and the Auto-Rally vehicle model from
simulations. We simulated a full vehicle model using the
estimated parameters and compared the model output with
data. It can be seen that, as expected, the identified vehicle
model can satisfactorily reproduce the data, especially when
the system uses simulated data. Data collected using the
Auto-Rally vehicle show obvious non-Gaussian noise which
may have some effect on the estimation process.

Compared with the results in Fig. 6, the simulated tra-
jectories of the Auto-Rally vehicle in Fig. 8 show larger
deviation from the data. The reason may be that we tuned
the estimation of the noise statistics of the standard UKF to
be optimal (in some degree), but Algorithm I was using a
suboptimal estimator for the noise statistics. The advantages
of Algorithm I are, of course, that it is more efficient
and can work on-line. We also expect that Algorithm I
is especially useful for time-varying parameters estimation
problems (i.e., estimation of a linear parameter varying
(LPV) driver model).

V. CONCLUSIONS

In this paper we introduced three vehicle models, namely,
a single-track model, a double-track model and a full vehicle
model, and we estimated the model parameters using the
joint-state UKF algorithms based on both simulation and
experimental data. The design of the standard joint-state UKF
is hindered by the lack of knowledge of the unknown noise

statistics. By tuning the noise statistics of the standard joint-
state UKF, satisfactory estimates of the model parameters can
be obtained, but the tuning process is time consuming and
hence can only be implemented off-line. We introduced an
adaptive limited memory joint-state UKF algorithm (ALM-
JUKF), which estimates the system state, model parameters
and the Kalman filter hyperparameters related to the noise
simultaneously, hence making possible to provide on-line
estimates of the model parameters. The algorithm was val-
idated with both CarSim simulation data and experimental
data from a fifth-scale Auto-Rally vehicle.
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