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Abstract—In this work, we derive a Game Theoretic Differ-
ential Dynamic Programming (GT-DDP) algorithm in continu-
ous time. We provide a set of backward differential equations
for the value function expansion without assuming closeness of
the initial nominal control to the optimal control solution, and
derive the update law for the controls. We introduce the GT-
DDP algorithm and analyze the effect of the game theoretic
formulation in the feed-forward and feedback parts of the
control policies. Furthermore, we investigate the performance
of GT-DDP through simulations on the inverted pendulum
with conflicting controls and we apply the control gains on
a stochastic system to demonstrate the effect of the design of
the cost function to the feed-forward and feedback parts of the
control policies. Finally, we conclude with some possible future
directions.

I. INTRODUCTION

Differential game-theoretic or min-max formulations are
important extensions of optimal control having direct con-
nections to robust and H* nonlinear control theory. Despite
the plethora of work in this area, min-max algorithms for
trajectory optimization have only very recently been de-
rived, and have been applied to humanoid robotic control
problems [1], [2]. Solving differential games (or min-max)
problems is a challenging tasks. In practice, numerical algo-
rithms inspired from the solution of optimal control problems
are often used. Among them, differential dynamic program-
ming (DDP) has recently emerged as a suitable formulation
to compute feedback strategies iteratively with reasonable
computational costs. Several variations of DDP algorithms
have been derived and have been extensively applied to
deterministic and stochastic systems in robotics, autonomous
systems and computational neuroscience. In particular, in
[3] a discrete time DDP algorithm is derived for nonlinear
stochastic systems with state and control multiplicative noise,
and applied to biomechanical models. The resulting algo-
rithm, known as iterative Linear Quadratic Gaussian (iLQG)
control, relies on first order expansion of the dynamics. In
[4], second-order expansions of stochastic dynamical systems
with state and control multiplicative noise are considered.
The resulting algorithm, known as Stochastic Differential
Dynamic Programming (SDDP), is a generalization of iLQG.
In [5] random sampling techniques are proposed to improve
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the scalability of DDP. In [6] an infinite horizon version
of discrete time DDP is derived and in [7] discrete time
receding horizon DDP is applied for helicopter acrobatic
maneuvers. Finally in [8], DDP is derived for deterministic
nonlinear systems with controls limits and applied to control
of a humanoid robot in simulation. Interestingly, although the
initial derivation of DDP [9] was in continuous time, most
of work on the application of DDP for solving trajectory
optimization problems, including min-max DDP formula-
tions, such as [1], [2], rely on a discrete time formulation.
Compared to previous work, our contribution in this paper is
the derivation of the min-max DDP conditions in continuous
time. Specifically, we provide a set of backward differential
equations that are easy to implement and derive the optimal
policies for the two players/controllers.

With respect to the initial treatment of DDP in the book
by D. H. Jacobson and D. Q. Mayne [9] our analysis and
derivation of the Game-Theoretic DDP (GT-DDP) avoids a
restrictive assumption of the initial derivation in [9]. This
assumption was also discussed in a review paper of [9]
published in 1971 by Michael K. Sain [10]. In particular,
the fundamental assumption in the derivation of continuous-
time DDP in [9] is that the nominal control u is close to the
optimal control u*. This assumption allows the expansion
of the terms in the Hamilton-Jacobi-Bellman (HJB) Partial
Differential Equation (PDE) around u* instead u and results
in the cancelation of terms that depend on H,~ = 0, where
Hu~ stands for the partial derivative of the Hamiltonian with
respect to the control input.

GT-DDP does not rely on the assumption regarding the
closeness of the nominal controls u and v to u* and v*,
respectively, and therefore the quadratic expansions of the
terms in the HIB PDE are computed around the nominal
controls u, v and not the optimal control u*, v*. In this
case, the term H,, is not necessarily equal to zero.

The paper is organized as follows. In Section II the game
theoretic problem is formulated and the backward Riccati
equations are derived. In Section III the terminal conditions
are specified and the main algorithm is presented and Sec-
tion IV includes simulations results. Finally in Section V we
conclude and discuss future directions.

II. PROBLEM FORMULATION
We consider the following min-max problem:
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where V stands for the optimal performance index starting
from x at time g, x(¢) is an n-dimensional vector function
of time describing the state of the dynamic system at t €
[0,tf]. £ and ¢ are scalar functions of their arguments,
where £(x,u,v,t) is the running cost and ¢(x(ty),ts) is
the terminal cost. Finally, u is an m-dimensional vector
function that represents the stabilizing control of the system,
whose objective is to minimize the performance index,
whereas v is a g-dimensional vector function representing
the destabilizing control of the system that tries to maximize
the performance index.

In continuous time, the analysis starts with the Hamilton-
Jacobi-Bellman Isaacs (HJBI) partial differential equation.
More precisely, we have:

fw = muin max {C(x, u,v,t)
+ Vi(x,t) F(x,u,v, t)}, 3)

under the boundary condition
Vi(x,ty) = o(x(tf),tg). 4)
Given an initial/nominal trajectory of the state and control

(x,1,v), and letting 6x =x—X,du=u—1u, jv=v —v,
the linearized dynamics can be represented as
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The main idea here is to take expansions of the terms
in both sides of equation (3) around the nominal state
and control trajectories (X,1,V) to derive the update law
for the stabilizing control, destabilizing control, along with
the backward differential equations for the zeroth, first and
second order approximation terms of the value function.
Starting with the left-hand side of (3) we have:
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Thus, we get

V(xt)  dV(Xd) g
8t - dt Vx (Xa t)F(x,u,v,t) (9)
Similarly,
Vi(%,0)  dVi(,1) o
ot = e Vix (X, ) F(x,0,v,t). (10)

Finally, the partial time derivative of the Hessian of the
value function takes the form:

OVax (X, t)
ot

i=1

where VX(QX denotes the Hessian matrix of the i-th element
of Vi and F() denotes the i-th element of F(X,1,V,t).
Henceforth, the arguments for the functions V| F', etc, are
omitted for brevity, and they are evaluated at the nominal
trajectory (X, u,v) unless specified otherwise.

The left-hand side of (3) then becomes
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We now turn to the expansion of the right-hand side of
3).
L(x,u,v,t)
= L(x+ 0x,0+ 0u, v + 0v,t)
~ L+ L 0x+ Lidu+ L0V
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By expanding Vi (x,t), we have

1
Vi(x,t) = Vi (X + 0%, 1) = Vi + Vax0x + §V, (14)

where V € R" and each element of V is defined as

VO = §x:V.) §x.

XXX
The dynamic equation is expanded up to the first order,
that is,
F(x,u,v,t) = F(X+ éx,u+ du, v+ dv,t)

= F + Fyox + Fyou + Fyov. (15)

Therefore, the right-hand side of (3) can be expressed as
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Note that the term %VTF can be written as follows
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After equating (12) with (16), and canceling repeated
terms, we obtain
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where

Qx = FiVy + Ly,

Qu=FVyx+ Ly,

Qv = FJVyi + Ly,

Qxx = Lxx + 2Vax Fx,

Quu = £uw (18)

Qvv = Lyv,

qu = F;;Vxx + »Cuxa
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To find the optimal control ju* and Jv*, we compute the

gradients of the expression in (17) with respect to du and
dv, respectively, and make them equal to zero to obtain:

fu* = —Qua <qu6x + Quviv™ + Qu>’ (19)

' =~ (Quext Qi +Qu). @0

where Qvu = @, Notice that v* is still in the previous
expression of dju*. We need to replace the v* term in (19)
with (20) and solve for du*. Similarly, we can solve for
ov*. The final expressions for ju* and Jv* are specified as
follows:

ou* =1, +Lydx and ov*' =1, + Lydx, 21

with the feed-forward gains l,,l, and feedback gains
L., Ly defined as:

lu = - (Quu - quQ;\}Qvu)_l (Qu - quQ;\}Qv) ’
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In many applications in engineering, we can design the
cost function. In order to see the effect that the design of the
cost function has on the feed-forward and feedback gains,
we recall that Quy = Luu and Qv = L. Moreover, since
Luu, Lvy are design parameters, we can choose them such
that Lyy > 0 and Ly, < 0. Note also that the positive defi-
niteness of L, and negative definiteness of L. are required
since the role of the first controller/player is to minimize
the cost while the role of the second controller/player is to
maximize it. Given new Quu > 0 and Qv+ < 0 we have the
following expressions
-1

Quu - quQ;\}Qvu > O = <Quu - quQv\}Qvu) > O;

-1
vi - Qqu;&qu < 0 = (vi - QVUQ;&QUV) < 0

The previous matrix inequalities show that the feed-
forward and feedback part of the control policies of the two
players will operate such that the first player aims at reducing
the cost while the second player aims at increasing it. An
interesting characteristic of trajectory optimization methods
such as DDP is that they provide the locally optimal state
trajectory, optimal feed-forward control and locally optimal
feedback gains. Here we show how the feed-forward and
feedback parts of the correction terms du and dv depend
on the design of the cost function. In the simulation section
we demonstrate the effect of the cost function on the feed-
forward and feedback parts of the minimizing control policy



for different values of L.

A. Backward Propagation of the Value Function

The next step is to substitute the optimal control (19) and
disturbance (destabilizing control) (20) to the HIBI equation
(3) in order to find the update law of the value function and
its first and second order partial derivatives. Specifically, we
have:

dv AV 1 dVix
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After collecting terms on the right-hand side of (26) as
zeroth order, first order and second order expressions of dx,
we can equate the coefficients of dx on the left-hand side
and right-hand side of (26) and readily obtain the backward
propagation equations with respect to the value function and
its first and second order partial derivatives. These backward
differential equations are expressed as follows

av 1
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1
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In many applications in engineering the cost function is
designed such that the terms Ly, = L], = 0. In this case
the differential equations for the backward propagation of
the value function are simplified as follows

av L 1
_a =L + ILQu + ILQV + §1LQuu1u + §ILQVVIV’
(28)
de T T T T
_F = Qx + LuQu + LVQV + qulu + valv
+ LLQuulu + LI,QVVIV7 (29)
dVix
+ LLQVVLV + Qxx- (30)

The backward differential equations in (27) and (28)
are different with respect to the corresponding backward
equations in the discrete time formulation of min-max DDP
in [1] and [2]. Besides the form of the backward differential
equations, one of the major differences between the discrete
and continuous time formulations is on the specification
of the terms Quu and Q.. In the continuous case these
terms are specified by L,y and Ly and therefore they are
completely specified by the user. This is not the case with
the discrete time formulation of min-max DDP (see equations
(10) and (11) in [2]) in which the terms Q. and Qv+ are
also functions of Vi, besides Ly, and L., . The result
of this observation is that for the discrete time case the
positive definiteness of (Qy, and the negative definiteness
of (v along the nominal trajectories are not guaranteed.
As we show in our derivation, this is not the case with
the continuous time formulation of GT-DDP and therefore
the continuous version is numerically more stable that the
discrete time.

III. TERMINAL CONDITIONS AND THE MINIMAX DDP
ALGORITHM
In this section, we first specify the terminal condition for
the backward differential equations with respect to the value
function and its first and second order partial derivatives.
At the final time, we have (4). By taking the Taylor series
expansions around X(ts) we get

o(x(ts),tr) = d(x(tr) +0x(ts),ty)
~ P(R(tg),tr) + 0x(tr) dx (X(Lf), tr)
+ 0x(tf) dsex (X(t ), )0 (t )
Therefore, the boundary conditions at ¢ = t; for the

backward differential equations, up to second order, are given
by

€1y

V(tf) = ¢(i(tf)7 tf)7 (32)
Vie(ty) = dx(X(tg),ty), (33)
Vix(tf) = dxxc(X(tg), ty). (34)

The GT-DDP algorithm is provided in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we apply our algorithm to two systems,
namely, the inverted pendulum and the two-player pursuit
evasion game under an external flow field. The dynamics of
the first problem is affine in control and the cost is quadratic
in control, whereas in the second problem, the dynamics is
nonlinear in control and the cost function is non-quadratic.

A. Inverted Pendulum Problem

We first apply our algorithm on the inverted pendulum
with conflicting controls. In particular, the dynamics is given
by 16 + b0 — mglsin® = u — v, where the parameters are
chosen in the simulations as m =1 Kg, { =0.5m, b= 0.1,
I = mf? g = 9.81 Kgm/sec?. Our goal is to bring the
pendulum from the initial state [6,60] = [, 0] to [0,0] =
[0,0]. The cost function is given by J = x(t;)1Q rx(ts) +



fg " (urRyu—vrR,v) dt, where x = [6, 0], the terminal cost

100 0
0 5 and R, =0.1, R, =0.2.

We set the initial control to be u = v = 0, the terminal
time to be ¢y = 0.5 and the multiplier v = 0.8. As can
be seen in Figure 1, the cost converges in 4 iterations. We
include 10 iterations to ensure convergence. Figure 2 presents
the optimal controls of u and v at the 10th iteration, as well
as the corresponding optimal trajectories of the states 6, 0.

weight matrix Qy =

Algorithm 1 GT-DDP Algorithm

Input: Initial condition of the dynamics xg, initial
stabilizing control u and destabilizing control v, final time
ty, multiplier v and a positive constant e.

Output: Optimal stabilizing control u*, optimal
destabilizing control v* and the corresponding optimal
gains 1y, Ly, 1y, Ly.

*

1: procedure UPDATE_CONTROL(xg, U, V, t5)

2: while ¢(x(t7),t) > € do
3: Get the initial trajectory X by integrating con-
trolled dynamics forward with x(, t and v;
4: Compute the value of V, Vy, Vix at ¢ according
to (32)-(34);
5: Integrate backward the Riccati equations (27);
6: Compute 1, Ly, 1y, Ly from (22) through (25);
7: Integrate (6) forward by replacing du and dv with
(Iy +Ly6x) and (1, + Ly 0x), respectively, to get 6x(t);
8: Compute du = 1, + Ly6x and v = 1, + Ly 0x;
9: Update control u* = u* +~du, where v € [0, 1];
10: Set u = u* and v = v*;
11: end while
12: return u*, v*, 1, Ly, 1y, Ly
13: end procedure
. Cost
‘ ’ ’ ) Itesratioﬁns ’ ’ ’ *

Fig. 1: Cost per iteration of the inverted pendulum with
conflicting controls.

B. Inverted Pendulum Problem with Stochastic Disturbances

In this subsection, we utilize GT-DDP to guide the inverted
pendulum to the desired state under the presence of stochastic
disturbance that acts in the same channel as the control. Our
goal is to analyze in simulation how the min-max formulation
of GT-DDP affects the resulting feedfoward and feedback
parts of the minimizing control policy. To this end, we

Theta Theta dot
4 0 ey
Kl s y
L3 | ) "
2 “‘ -5 “ .
1 QQ “ "'
0 2 ~10 x>
0 0_.2 O..4 0.6 0.8 0 0..2 0..4 0.6 0.8
Time in sec Time in sec

Stabilizing Control Destabilizing Control
40 20

20 10
0 0
-10

-20
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Time in sec Time in sec

Fig. 2: Optimal controls u and v in black at the bottom
and the corresponding initial trajectories of the states 9,0
in dashed blue at the top. Red lines represent the desired
terminal states.

consider the dynamics of the form 16 + b — mglsin =
u + w, where w is a Gaussian noise with mean 0 and
variance 2. The task for GT-DDP is to drive the inverted
pendulum from the initial state [#,6] = [, 0] to the final
state [0, 6] = [0, 0].

For our simulations, we set ¢ = 4 and pick R, =
10,0.2,0.13 for comparison. For every value of R, we run
the system with our modified control for 100 times. In Figure
3, we have three colored plots, where magenta, blue and
cyan plots correspond to the case of R, = 10,0.2 and 0.13,
respectively. The plot of each color depicts the mean of 100
trajectories of 6 with respect to time and we draw an error
bar at every time step. Each error bar has a distance of the
standard variance at that time step above and below the curve.
Similarly, in Figure 4, we illustrate the mean and standard
deviation of 100 trajectories of § with respect to time for the
different values of R,.

Our simulations reveal the role of the min-max formu-
lation of GT-DDP. In particular, Figures 3 and 4 illustrate
that as R, decreases, both the feed-forward and feedback
parts of the control policy change. The feed-forward control
steers the mean trajectory towards the desired state early
for smaller values of R,. In addition, the locally optimal
feedback gains reduce the variability of the trajectories as
R, decreases. The aforementioned observations indicate the
interplay between the feed-forward and feedback part of the
minimizing control policy under GT-DDP formulation and
show how this formulation results in robust policies that
shape both the mean and variance of optimal trajectories.
We believe that these findings are important not only for the
areas of engineering and robotics but also for modeling risk
sensitive behaviors of bio-mechanical and neuromuscular
systems.
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Fig. 3: Magenta, blue and cyan plots correspond to the case
of R, =10,0.2 and 0.13, respectively. Each plot represents
mean and standard variance of 100 trajectories of 6 with
respect to time. The red line at the bottom depicts the desired
state 6 = 0.
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Fig. 4: Magenta, blue and cyan plots correspond to the case
of Ry =10,0.2 and 0.13, respectively. Each plot represents
mean and standard variance of 100 trajectories of 6 with
respect to time. The red line depicts the desired state =0

V. CONCLUSION

In this paper, we consider a differential game problem
involving two conflicting controls. By taking a Taylor series
expansion of the HIBI equation around a nominal trajectory,
we find the update law of both controls/players, as well
as the backward propagation equations of the zeroth, first
and second order approximation terms of the value function.
The resulting GT-DDP algorithm, is derived using first order
expansion of the dynamics in continuous time. We test GT-
DDP on the inverted pendulum with conflicting controls.
Finally, we demonstrate the effect of the design of the cost
function to the feed-forward and feedback parts of the control
policies. In particular our simulations suggests that the min-
max formulation results in more robust performance. As
shown in Figures 3 and 4, the profiles of the state trajectories

suggest that the effect of stochastic disturbances is reduced
in the GT-DDP formulation as R, decreases.

Future research includes applications of this method to
more realistic systems and dynamics with many degrees of
freedom. It will also be attempted to extend this work to
a stochastic version of GT-DDP for solving stochastic dif-
ferential game problems. The stochastic version of GT-DDP
will have direct connections to risk sensitivity and plethora of
applications starting from neuromuscular and bio-mechanical
systems to stochastic pursuit-evasion problems. Application
to neuromuscular systems will require the extension of GT-
DDP to systems with control limits and state constraints.
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