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Abstract— In this paper, we address the differential game of
pursuit and evasion between two players in the presence of an
external flow field. It is assumed that the two players move on
the plane at fixed but different speeds, and they are both agile.
That is, they steer by choosing at each instant their direction
of travel and abrupt heading changes are allowed. The external
flow field is approximated by a time-invariant affine function.
By utilizing standard techniques from differential game theory,
we characterize the regions of initial conditions that lead to
capture, as well as the regions that result in evasion when the
two players act optimally. We derive the optimal strategies of
the pursuer and the evader within the capture regions. Finally,
we present numerical simulations of the resulting pursuer and
evader trajectories for several values of the parameters of the
external flow field.

I. INTRODUCTION

Two-player pursuit-evasion differential games have been
studied extensively in the literature. Pursuit-evasion between
an agile pursuer and an evader with a curvature constraint
was studied in Isaacs’ Homicidal Chauffeur game [1]. A
reversed version of the Homicidal Chauffeur game, where
the evader is agile and the player has a curvature constraint,
was recently studied in [2], [3]. A stochastic version of
the Homicidal Chauffeur game has been addressed in [4].
Another similar game, called the Game of Two Cars [5],
focuses on two players, both having a finite maximum turn-
ing radius. A general result for the pursuit-evasion problem
with curvature constraints was presented in [6]. The approach
was extended to the three-dimensional space in [7]. Other
pursuit-evasion games of two players under some special
scenarios include the isotropic rocket problem addressed in
Isaacs’ book [1], where one of the players has a bounded
magnitude of acceleration, and the Lion and Man problem
[8], where the movements of both players are restricted to
lie within a region of the whole plane.

One common assumption among all the previous results is
that they do not take into consideration how environmental
conditions may affect the outcome of the game. For instance,
when either the pursuer or the evader (or both) is a small
autonomous underwater vehicle (AUV) or an unmanned
aerial vehicle (UAV), the presence of the sea current or the
wind, will significantly affect their motion. As a result, their
behavior and the solution of the differential game may be
greatly affected by the existence of the external flow field.

The effect of an external flow field has received a con-
siderable amount of attention in optimal control problems.
The problem of optimally guiding a Dubins vehicle [9] to a
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specified position in a flow field was addressed in [10]. The
problem of steering a Dubins vehicle in a stochastic wind
field while minimizing the expected time of capture has been
studied in [11], and the minimum-time guidance problem
for the isotropic rocket in the presence of wind has been
discussed in [12]. Pursuit-evasion games under the influence
of external disturbances do not seem to have received the
same level of attention in the literature, however.

In this paper, we consider the differential game of pursuit
and evasion between two players on a plane under an
external flow field. It is assumed that the pursuer and the
evader move with constant but different speeds, and they
are both agile, that is, they are allowed to change their
headings instantaneously. To simplify the analysis, it will
be assumed that the flow field is approximated by a time-
invariant, spatially-affine function. Our goal is to find the
region of initial conditions of both players that leads to
capture when both players act optimally, and derive the
corresponding optimal strategies of the two players when
capture is guaranteed.

II. PROBLEM FORMULATION

A. Problem Formulation

Consider a pursuer and an evader moving on a plane under
the influence of an external flow field. The equations of
motion for the pursuer and the evader in the inertial reference
frame are given by

ẋP = vP cosφ+ w1(xP , yP ), (1)
ẏP = vP sinφ+ w2(xP , yP ), (2)
ẋE = vE cosψ + w1(xE, yE), (3)
ẏE = vE sinψ + w2(xE, yE), (4)

where (xP , yP ) ∈ R2 and (xE, yE) ∈ R2 denote the positions
of the pursuer and the evader, respectively, φ, ψ ∈ [−π, π] are
the control of the pursuer and the evader, and vP and vE rep-
resent the speed of the pursuer and the evader, respectively. In
this work, we will assume that vP > vE . Finally, w1(·, ·) and
w2(·, ·) are the components of an external spatially varying
flow field along x-axis and y-axis, respectively.

B. Differential Game Formulation in the Reduced Space

In order to simplify the analysis, it will be assumed that
the external flow field is approximated, at least locally, by a
time-invariant affine function. Specifically, let

w1(x, y) = α1x+ β1y + γ1, (5)
w2(x, y) = α2x+ β2y + γ2, (6)

where αi, βi, γi ∈ R (i = 1, 2) are prescribed constants.
By choosing a new reference frame whose origin is at



the pursuer, the kinematic equations can be represented in
a reduced two-dimensional space space. In particular, let
x = xE − xP and y = yE − yP be the relative distance
between the evader and the pursuer along the x-axis and y-
axis, respectively. The kinematic equations in terms of x and
y are then given by

ẋ = vE cosψ − vP cosφ+ α1x+ β1y, (7)
ẏ = vE sinψ − vP sinφ+ α2x+ β2y. (8)

By defining the reduced state as x = [x, y]T, the equations
can then be written compactly as

ẋ = vEv− vP u + w(x), (9)

where v = [cosψ, sinψ]T and u = [cosφ, sinφ]T are the
controls, and where the relative wind field is given by

w(x) = Ax, where A =

[
α1 β1
α2 β2

]
. The game terminates

when capture occurs, that is, when the evader is in the
interior of a ball B of radius ` centered at the pursuer’s
current location, given by B = {x ∈ R2 : |x| ≤ `}. The
terminal surface is the manifold in the state space which,
once penetrated, determines termination of the game. The
terminal surface C is thus the circle centered at the origin of
radius `, i.e., C = {x ∈ R2 : |x| = `}. Accordingly, the state
space E is the portion of the x, y-plane exterior to C, that is,
E = {x ∈ R2 : |x| > `}.

Under this setup, we want to find the region in the state
space such that the evader can be captured by the pursuer if
their initial relative coordinates fall inside this region. This
region is denoted as the capture zone. The region which leads
to escape of the evader is the escape zone.

To this end, we formulate the problem as a game of kind
[1], that is, the game has finitely many outcomes. The payoff
is defined as

J(x(t0), φ(·)ψ(·)) =

 +1, for escape,
0, for neutral outcome,
−1, for capture.

(10)

The outcome is neutral [1] if the trajectory of the evader
intersects the terminal surface, but it does not penetrate it.

Our goal is to find the region of the initial conditions that
leads to capture or escape with conflicting actions of the
pursuer’s control φ and the evader’s control ψ that mini-
mize/maximize the payoff (10) under the dynamic equations
(7) and (8).

III. PROBLEM ANALYSIS

A. Effect of External Field

Before we proceed with the formulation of the differential
game of kind, some discussion that can help the reader
intuitively understand the types of solutions one may expect
to obtain is in order. From (9), it is clear that in the reduced
state space the system is described by a linear differential
equation, controlled by v and u.

Broadly speaking, the objective of the pursuer is to make
|x| → 0 (i.e., stabilization to the origin), whereas the
objective of the evader is to ensure that this does not occur
(and even make, perhaps, |x| → ∞ as time increases). From

(9) it is clear that since the flow field is approximated by
an affine function, the solution of the problem will depend
on the relative contributions of the flow field term Ax and
the contribution by both players, namely, vEv− vPu. Since
the latter term is uniformly bounded whereas the former
term increases without bound, it follows that if the relative
distance between the players is very large, the external flow
field will be too strong to be overcome by the (constrained)
control actions of either player. In that case, the trajectories
of both players will tend to follow the vector field directions
of the external flow. This observation necessarily restricts
the results of the current analysis locally around the origin.
In addition, and depending on the strength of the wind,
controllability may become an issue given that the control
authority of the pursuer and the evader are limited.

The problem of controllability/stabilizability of a linear
system with bounded controls has been extensively studied in
the literature [13]–[16]. The main result in this context states
that global stabilizability with bounded controls is possible
only if all the eigenvalues of the matrix A have non-positive
real part. However, this is a global result that holds for all
initial conditions. In our problem we restrict our analysis to
a region locally around the origin where capture can occur
even if the matrix has eigenvalues with positive real part.

B. The Game of Kind

In this subsection, we follow the standard approach of the
game of kind introduced in [1]. First, we focus on identifying
the usable part of the terminal surface. The UP is the subset
of C in which the pursuer can cause termination immediately
when both players act optimally. The remaining points on C
form the nonuseable part, that is, termination will not occur
even if the trajectory reaches this part of C under optimal
play (i.e., when both players act optimally). The part of C
that separates the usable part and the nonuseable part of C
is called the boundary of the usable part (BUP).

In order to find the usable part, we parameterize C with
the variable s according to

x = ` cos s, y = ` sin s. (11)

Let r2 = x2 + y2 = |x|2. Taking the time derivative on both
sides of the last equation, and consider only points on C, we
have

`ṙ = ` cos s(vE cosψ − vP cosφ+ α1` cos s+ β1` sin s)

+ ` sin s(vE sinψ − vP sinφ+ α2` cos s+ β2` sin s).

The usable part of C is specified by the condition

min
φ

max
ψ

ṙ(x) < 0, x ∈ C, (12)

which implies that the relative trajectory is able to penetrate
the terminal surface C. From the last two inequalities, and
using standard trigonometric identities, we have that, for x ∈
C,

min
φ

max
ψ

ṙ(x) = vE − vP +
`

2
(α1 + β2)

+
`

2
[(α1 − β2) cos 2s + (β1 + α2) sin 2s]. (13)



Let now σ =
√

(α1 − β2)2 + (β1 + α2)2. When σ = 0,
we have α1 − β2 = 0 and β1 + α2 = 0. Hence, whether the
game terminates depends on the sign of vE − vP + `(α1 +
β2)/2. Specifically, when vE − vP + `(α1 + β2)/2 < 0, the
usable part of the terminal surface is C itself, whereas when
vE − vP + `(α1 + β2)/2 > 0, the game will not terminate
under any initial conditions of the pursuer and the evader,
which means that the evader always escapes. In the latter
case the whole state space E is the escape zone.

Henceforth, we assume that σ 6= 0. Then (12) and (13)
imply that

min
φ

max
ψ

ṙ = vE − vP +
`

2
(α1 + β2) +

`σ

2
sin(θ + 2s) < 0,

(14)

where θ is given by sin θ = (α1 − β2)/σ and cos θ =
(β1 + α2)/σ. From (14) we reach the following conclusion:

Proposition 3.1: In the reduced space the game will not
terminate if

2(vP − vE)− `(α1 + β2)

`σ
< −1, (15)

where σ =
√

(α1 − β2)2 + (β1 + α2)2.

Proof: From (14), we have sin(θ+2s) < [2(vP−vE)−
`(α1 + β2)]/`σ. Let

ζ =
2(vP − vE)− `(α1 + β2)

`σ
. (16)

Clearly, when ζ < −1, the inequality above has no solution
for s. That is, when (15) is satisfied, the game will not
terminate since no usable part exists in this case.

Corollary 3.2: When ζ ≥ 1 the usable part is the whole
terminal surface C.

Remark 1: Note that (15) is a “controllability”-like con-
dition that relates the elements of the matrix A and the
bounds of the velocities of both the players so that capture
is possible.

Henceforth, we assume that −1 ≤ ζ < 1. Under this
assumption, the BUP is determined from sin(θ + 2s) = ζ.
This yields four solutions in [0, 2π), denoted by s1, s2, s3 =
s1 + π, s4 = s2 + π. Hence, the BUP contains four points
on C, represented by Pi = (cos si, sin si), i = 1, . . . , 4. A
typical illustration of the terminal surface, which is divided
into the usable and nonusable parts by the BUP, which
consists of four points on the terminal surface, is shown in
Figure 1.

Now we turn to the construction of the barrier [1]. The
barrier is a surface in the state space that consists of initial
conditions for which the outcome is neutral. One property
of the barrier is that it is never crossed by either the pursuer
or the evader during optimal play. In particular, the barrier
emanates from the BUP and is tangent to C at the BUP. We
denote the barrier by S. At each point on S we define the
normal vector ν = [ν1, ν2]T ∈ R2 extending into the escape
zone.

The Isaacs equation [1] for the game of kind for this

Nonusable part Usable part

Barrier

s1

s2

s3
s4

l

Usable part

Barrier

Nonusable part

BUP

BUP

BUP

BUP

Fig. 1. The terminal surface C of the game is given by a circle of radius `.
The circle is separated by the BUP (4 points on the circle parameterized by
s1 through s4) into the usable part (black lines) and the nonusable part (red
lines). Every barrier meets the terminal surface at the BUP tangentially.

problem becomes

0 = min
φ

max
ψ
{ν1(vE cosψ − vP cosφ+ α1x+ β1y)

+ ν2(vE sinψ − vP sinφ+ α2x+ β2y)}
= vEρ− vPρ+ ν1(α1x+ β1y) + ν2(α2x+ β2y), (17)

where ρ =
√
ν21 + ν22 and the corresponding optimal control

of the pursuer and the evader on the barrier are specified by

cosφ∗ =
ν1
ρ
, sinφ∗ =

ν2
ρ
, (18)

cosψ∗ =
ν1
ρ
, sinψ∗ =

ν2
ρ
. (19)

From [1], it follows that νi, i = 1, 2, satisfy the differential
equations

ν̇i = −
∑
j

νj
∂fj(x, φ∗, ψ∗)

∂xi
, i = 1, 2, (20)

where fj , j = 1, 2, stands for the right-hand side of (7) and
(8), respectively. We take these equations and the original
equations under the optimal control φ∗ and ψ∗, and reverse
the time direction by replacing t with τ = tc − t to
obtain the Retrogressive Path Equations (RPE). These are the
differential equations with respect to the retrograde time τ
and indicate the fact that the game will be solved backwards
in time starting from the terminal surface C. Denoting with
(̊ ) the derivative with respect to τ , the retrograde evolution
of the states and the vector ν can be established as:

x̊ = (vP − vE)
ν1
ρ
− α1x− β1y,

ẙ = (vP − vE)
ν2
ρ
− α2x− β2y,

ν̊1 = α1ν1 + α2ν2,

ν̊2 = β1ν1 + β2ν2.

(21)

By the definition of the BUP and the barrier, it is clear
that the barrier starts at the BUP towards the state space
E in a retrogressive sense. Moreover, the two surfaces meet
tangentially, since no penetration occurs at the BUP and the
vectorfields of both players are tangential to the barrier. Pick



any s̄ ∈ {s1, s2, s3, s4}. The initial conditions for the RPEs
are thus given by x(τ = 0) = ` cos s̄, y(τ = 0) = ` sin s̄,
ν1(τ = 0) = cos s̄, ν2(τ = 0) = sin s̄. By integrating (21)
subject to these initial conditions we obtain

ν(τ) = eA
Tτν(τ = 0), (22)

x(τ) = e−Aτx(τ = 0) +

∫ τ

0

e−A(τ−ξ)b(ξ) dξ, (23)

where b(τ) = (vP − vE)ν(τ)/|ν(τ)|. Therefore,

x(τ) = `e−Aτ
[
cos s̄
sin s̄

]
+ (vP − vE)e−Aτ

∫ τ

0

e(A+AT)ξ

|ν(ξ)|

[
cos s̄
sin s̄

]
dξ. (24)

By plotting the trajectories of (24) given the four initial
conditions of the BUP, we can determine whether these are
valid barriers and whether the state space E is separated by
the barriers.

If E is indeed separated by the barriers, then the regions
of E that contains the usable part of the terminal surface will
form the capture zone. Otherwise, the whole state space is
either the capture zone or the escape zone.

C. Game of Degree in the Capture Region

Now that we have identified the capture region, we aim
at determining the optimal trajectory of x inside this region
by solving a game of degree. Within the capture region, the
performance index is J =

∫ tc
0

dt. To this end, we define
the value function V(x), which satisfies the Hamilton-Jacobi-
Isaacs (HJI) equation [1]

0 = min
φ

max
ψ
H(x,Vx), (25)

where the Hamiltonian H is given by

H = 1 +
∂V
∂x

(
vE cosψ − vP cosφ+ α1x+ β1y

)
+
∂V
∂y

(
vE sinψ − vP sinφ+ α2x+ β2y

)
. (26)

Let Vx = ∂V
∂x , Vy = ∂V

∂y . Then (25) can be rewritten as

0 =1 + Vx(α1x+ β1y) + Vy(α2x+ β2y)

+ min
φ
{−vP (Vx cosφ+ Vy sinφ)}

+ max
ψ
{vE(Vx cosψ + Vy sinψ)}. (27)

Hence, the optimal controls φ∗ and ψ∗ are given by

cosφ∗ =
Vx
µ
, sinφ∗ =

Vy
µ
,

cosψ∗ =
Vx
µ
, sinψ∗ =

Vy
µ
,

(28)

where µ =
√
V2
x + V2

y . Plugging (28) back into the Hamil-
tonian, we get the optimal Hamiltonian

H∗ = 1 + (vE − vP )µ+ Vx(α1x+ β1y) + Vy(α2x+ β2y).
(29)

The RPEs can then be expressed as

x̊ = (vP − vE)
Vx
µ
− α1x− β1y, (30)

ẙ = (vP − vE)
Vy
µ
− α2x− β2y, (31)

V̊x = α1Vx + α2Vy, (32)

V̊y = β1Vx + β2Vy. (33)

On the terminal surface C, we have V = 0. Along with the
parameterization of C by x = ` cos s, y = ` sin s, we get

0 =
∂V
∂s

= `(−Vx sin s+ Vy cos s).

Upon solving these equations, we further get, for some δ >
0,

Vx(τ = 0) = δ cos s, Vy(τ = 0) = δ sin s. (34)

By substituting (34) into the expression forH∗, one can solve
for δ to obtain δ = 1/η where η = vP − vE − `(α1 cos2 s+
(β1 +α2) sin s cos s+ β2 sin2 s). Integrating the RPE’s (30)
through (33) subject to the initial conditions (34) yields[

Vx(τ)
Vy(τ)

]
= eA

Tτ

[
δ cos s
δ sin s

]
, (35)

and hence[
x(τ)
y(τ)

]
= e−Aτ

[
` cos s
` sin s

]
+ (vP − vE)e−Aτ

∫ τ

0

e(A+AT)ξ

µ(ξ)

[
δ cos s
δ sin s

]
dξ, (36)

which yields the optimal trajectory for the game of degree.

IV. SIMULATION RESULTS

In this section, we present numerical simulations to il-
lustrate the previous analysis. In the following cases, we
vary the matrix A while we keep `, vP and vE fixed to
compute different types of barriers under different flow fields.
Henceforth, we let ` = 0.1, vP = 1.0, vE = 0.9. For the
parameters of the flow field in the inertial frame, we set
γ1 = γ2 = 0.

Case 1: A =

[
0 10
−5 0

]
. This matrix has two pure imag-

inary eigenvalues (center). In this case, σ = 5, ζ = 0.4 and
the corresponding values for the BUP are s1 = 0.2058, s2 =
1.3650, s3 = 3.3474 and s4 = 4.5066. As shown in Figure
2, the trajectories of the RPEs emanating from P1 and P3

are inside B; these two trajectories are outside the state space
E . Hence, they are not valid barriers and are discarded. On
the other hand, the trajectories emanating from P2 and P4

are valid barriers. They have spiral-like shapes but they fail
to separate the state space into two parts. The whole state
space is a capture zone; regardless of the initial conditions of
the two players, capture is guaranteed. The dashed magenta
lines in Figure 2 show the optimal trajectories in relative
coordinates with respect to different initial positions on the
usable part of the terminal surface. Although the barrier does
not separate the state space into capture and escape zones, it
is still not crossed during optimal play, which gives us some



information as to how the optimal trajectories look like. The
barrier also marks a discontinuity in the value function.
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Fig. 2. Barriers in frameM when A = [0, 10;−5, 0]. The dashed magenta
lines are the optimal trajectories of the relative coordinates emanating from
the usable part of the terminal surface.

Given the initial positions for the evader and the pursuer
as xE(0) = [−0.764, 0.337] and xP (0) = [−0.524, 0.336],
respectively, the optimal trajectories of the evader and the
pursuer in the inertial frame are depicted in Figure 3.
These trajectories are consistent with the external flow field
represented by the black arrows. The results suggest that
both players are trying to take advantage of the flow field.
Intuitively, this makes sense. Since the matrix A has purely
imaginary eigenvalues, the uncontrolled system trajectories
are circles around the origin. The flow field does not give
an advantage to either the pursuer or the evader. It is then
reasonable that under optimal controls of both players, the
trajectories in the reduced state move in spiral-like patterns,
as confirmed in Figure 2.
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Fig. 3. Optimal trajectories of the evader in green and the pursuer in
dashed magenta, respectively, where A = [0, 10;−5, 0]. Red circle around
the final position of the pursuer represents the terminal surface. The flow
field is depicted by the black arrows in the background.

Case 2: A =

[
1.4020 −1.0772
1.4770 0.7756

]
. In this case, the eigen-

values are a complex conjugate pair with positive real part
(unstable spiral). These values correspond to σ = 0.7431,
ζ = −0.2390 and the corresponding parameters for the BUP

are s1 = 5.6612, s2 = 1.1901, s3 = 2.5196, s4 = 4.3317.
As depicted in Figure 4, and similarly to the first case, the
trajectories of the RPEs emanating from P2 and P4 are inside
B and are thus discarded. The trajectories starting from P1

and P3 intersect C after some time, and thus the trajectories
after the intersection are discarded. In this case, the barrier
separates the capture zone from the escape zone. The capture
zone is represented by the shaded region in Figure 4. All the
remaining space outside the circle is the escape zone.

The optimal trajectories of the evader and the pursuer in
the inertial frame are depicted in Figure 5 with initial posi-
tions xE(0) = [−0.20, 0.683] and xP (0) = [−0.230, 0.579],
respectively. Notice that in this case, there is a small region
of relative initial positions for the pursuer and the evader
such that capture occurs.
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Fig. 4. Barriers in frameM for A = [1.4020,−1.0772; 1.4770, 0.7756],
the shaded region is the escape zone and the white region outside the circle
is the escape zone.
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Fig. 5. Optimal trajectories of the evader in green and the pursuer in
dashed magenta, for A = [1.4020,−1.0772; 1.4770, 0.7756].

In this case the matrix A has two complex eigenvalues
with positive real parts, which implies that the origin is an
unstable spiral. The trajectories of the uncontrolled system
would result in |x| → ∞ as time goes on. In this case, the
flow field gives an advantage to the evader. Indeed, as shown
in Figure 4, the capture zone is very small compared to the
escape zone.



Case 3: A =

[
1 2
2 1

]
. In this case, σ = 4, ζ = 0 and

the corresponding parameters for the BUP are s1 = 0, s2 =
π/2, s3 = π and s4 = 3π/2. As illustrated in Figure 6,
all four trajectories emanating from P1, P2, P3 and P4 are
valid barriers. They separate the state space into two capture
zones and two escape zones, depicted in the figure by the two
shaded regions and the two white regions, respectively. Typ-
ical optimal trajectories of the evader and the pursuer in the
inertial frame with initial positions xE(0) = [0.951,−0.852]
and xP (0) = [1.265,−1.165] are shown in Figure 7.
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Fig. 6. Four valid barriers in frame M emanating from P1 through P4,
for A = [1, 2; 2, 1]. The state space is divided by two shaded capture zones
and two white escape zones.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

P
E

Fig. 7. Optimal trajectories of the evader in green and the pursuer in
dashed magenta, for A = [1, 2; 2, 1].

In Cases 3, the matrix A has one positive eigenvalue and
one negative eigenvalue. Hence, the origin is a saddle point,
and in some part of the plane the flow field points towards
the origin (helping the pursuer), whereas in other parts it
points away from the origin (thus giving an advantage to the
evader), as indicated by the black vector fields in Figure 7.
This suggests that the pursuer tries to steer the game in the
part of the space that the flow field is beneficial to him and
the evader does the same, i.e., tries to steer the state to the
parts of the state space that are more helpful to him. In this
case, the game will terminate (or not) depending on whether

the pursuer can capture the evader before the latter moves in
the part of the space that the former has an advantage.

V. CONCLUSIONS

This paper deals with a differential game between two
players in a plane subject to an external flow field. Under
the assumption that the flow field is approximated by a
time-invariant affine function, we reformulate the problem
as a game of kind and characterize the initial conditions that
secure capture of the evader, as well as the initial conditions
that lead to escape of the evader, when both players act
optimally. The optimal controls of both players inside the
capture zone are derived, and numerical simulations with
different parameters of the flow field are presented to illus-
trate the corresponding capture and escape zones. Follow-
up work includes the study of pursuit evasion problem
under more realistic wind fields, as well as the study of the
optimal control of the pursuer and the evader when stochastic
environment disturbances are taken into consideration.
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