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Abstract— Based on the highly successful Quaternion Mul-
tiplicative Extended Kalman Filter (Q-MEKF) for spacecraft
attitude estimation using unit quaternions, this paper proposes
a Dual Quaternion Multiplicative Extended Kalman Filter
(DQ-MEKF) for spacecraft pose (i.e., attitude and position)
and linear and angular velocity estimation using unit dual
quaternions. By using the concept of error unit dual quaternion,
defined analogously to the concept of error unit quaternion in
the Q-MEKF, this paper proposes, as far as the authors know,
the first multiplicative EKF for pose estimation. Compared to
existing literature, the state of the DQ-MEKF only includes six
elements of a unit dual quaternion, instead of eight, resulting
in obvious computational savings. A version of the DQ-MEKF
is presented that takes only discrete-time pose measurements
with noise and, hence, is suitable for uncooperative satellite
proximity operation scenarios where the chaser satellite has
only access to measurements of the relative pose, but requires
the relative velocities for control. Finally, the DQ-MEKF is
experimentally validated and compared with two alternative
EKF formulations on a 5-DOF air-bearing platform.

I. INTRODUCTION

The highly successful Quaternion Multiplicative Extended
Kalman Filter (Q-MEKF) based on unit quaternions for
spacecraft attitude estimation, described in detail in Sec-
tion XI of [1], has been used extensively in several NASA
spacecraft [2]. Although newer approaches, such as nonlinear
observers, have been shown to have some advantages over
the classical EKF, a comprehensive survey of nonlinear
attitude estimation methods [2] concluded that the classical
EKF is still the most useful solution.

A major advantage of the Q-MEKF is that the 4-by-4
covariance matrix of the four elements of the unit quaternion
does not need to be computed. As stated in [1], propagating
this covariance matrix, i.e., the state covariance matrix,
is the largest computational burden in any Kalman filter
implementation. By rewriting the state of the EKF in terms
of the three elements of the vector part of the unit error
quaternion between the true unit quaternion and its estimate,
only a 3-by-3 covariance matrix needs to be computed. The
unavoidable drawback of this approach is that all three-
dimensional attitude representations are singular or discon-
tinuous for certain attitudes [3]. Indeed, by construction, the
Q-MEKF described in Section XI of [1] will fail if the
attitude error between the true attitude and its estimate is
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larger than 180 deg. However, unlike the true attitude of the
body which can vary arbitrarily, the attitude error between
the true attitude of the body and its estimate is expected to be
close to zero, especially after the Q-MEFK has converged.
Hence, in the Q-MEKF described in [1], whereas the attitude
covariance matrix is only 3-by-3, the body can still have any
arbitrary attitude.

This paper derives a Dual Quaternion Multiplicative EKF
(DQ-MEKF) for spacecraft pose estimation based on the
classical Q-MEKF for attitude estimation. As far as the au-
thors know, this is the first multiplicative EKF for pose esti-
mation. Unit dual quaternions offer a compact representation
of the pose of a frame with respect to another frame. Their
properties, including examples of previous applications, are
discussed in length in [4].

The traditional approach to estimate the pose of a body
consists of developing separate estimators for attitude and
position. For example, [5] suggests two discrete-time linear
Kalman filters to estimate the relative attitude and position
separately. Since the translation Kalman filter requires the
attitude estimated by the rotation Kalman filter, the former is
only switched on after the latter has converged. Owing to this
inherent coupling between rotation and translation, several
authors have proposed estimating the attitude and position
simultaneously. For example, in [6], a lander’s terrain-relative
pose is estimated using an EKF. The state of the EKF
contains the vector part of the unit error quaternion and the
position vector of the lander with respect to the inertial frame
expressed in the inertial frame. Also in [7], the relative pose
of two satellites is estimated using an EKF. In this case, the
state of the EKF contains the vector part of the unit error
quaternion and the position vector of the chaser satellite with
respect to the target satellite expressed in a reference frame
attached to the target satellite. Finally, [8] also estimates the
pose between two frames using a discrete-time additive EKF.
In [8], the state contains the position vector of a body with
respect to some reference frame expressed in that reference
frame along with the four elements of the true quaternion
describing the orientation of the body.

As far as the authors know, the only previous EKF
formulations where the state includes a unit dual quaternion
are given in [9], [10]. However, these EKF formulations
include the true unit dual quaternion describing the pose of
the body and not the error unit dual quaternion between the
true unit dual quaternion and its best estimate. Therefore,
the state of the EKFs in [9], [10] contains all eight elements
of the unit dual quaternion. Moreover, in [9], [10] the
optimal Kalman state update is added to and not multiplied
with the current best unit dual quaternion estimate. As a
consequence, the predicted value of the unit dual quaternion



immediately after a measurement update does not fulfill the
two algebraic constraints of a unit dual quaternion. Hence, in
[9], the predicted value after a measurement update is further
modified to satisfy these constraints through a process that
includes parameters that must be tuned by the user. On the
other hand, in [10], these two algebraic constraints are simply
not enforced after a measurement update, which can lead to
numerical problems.

The main contributions of this paper are: 1) By using the
concept of error unit dual quaternion defined analogously to
the concept of error unit quaternion of the Q-MEKF, this
paper proposes, as far as the authors know, the first multi-
plicative EKF for pose estimation. As a consequence, the pre-
dicted value of the unit dual quaternion immediately after a
measurement update automatically satisfies the two algebraic
constraints of a unit dual quaternion. 2) By using the error
unit dual quaternion instead of the true unit dual quaternion,
the state of the DQ-MEKF is reduced from eight elements
to just six. As a consequence, the DQ-MEKF requires less
computational resources. Moreover, the state estimate of the
DQ-MEKF can be directly used by the pose controllers given
in [4] without additional conversions. 3) Similarly to the
Q-MEKF, the DQ-MEKF is a continuous-discrete Kalman
filter, i.e., the state and its covariance matrix are propa-
gated continuously between discrete-time measurements. As
a consequence, discrete-time measurements do not need to
be equally spaced in time and integrating different sensors
with different update rates is relatively straightforward. In
particular, the DQ-MEKF is designed to take continuous-
time linear and angular velocity measurements with noise
and bias and discrete-time pose measurements with noise. An
extension of the DQ-MEKF is also proposed that takes only
discrete-time pose measurements with noise and estimates
the linear and angular velocities. This version is suitable for
uncooperative satellite proximity operation scenarios where
the chaser satellite has only access to measurements of the
relative pose (e.g., from a camera), but requires the relative
velocities for control. 4) Finally, the DQ-MEKF without
velocity measurements is validated experimentally on a 5-
DOF air-bearing platform and compared with two alternative
EKF formulations. It is shown that the DQ-MEKF compares
favorably with these alternative formulations.

II. THE EXTENDED KALMAN FILTER (EKF)
First, the main equations of the EKF are reviewed

based on [1]. The state equation of the EKF is ẋn(t) =
fn(xn(t), t) + gn×p(xn(t), t)wp(t), where xn(t) ∈ Rn
is the state and wp(t) ∈ Rp is the process noise. The
process noise is assumed to be a Gaussian white-noise
process, whose mean and covariance function are given by
E {wp(t)} = 0p×1 and E

{
wp(t)w

T
p(τ)

}
= Qp×p(t)δ(t−τ),

where Qp×p(t) ∈ Rp×p is a symmetric positive semidef-
inite matrix. The initial mean and covariance of the state
are given by E {xn(t0)} , x̂n(t0) = xn,0 ∈ Rn
and E {(xn(t0)− xn,0)(xn(t0)− xn,0)T} , Pn×n(t0) =
Pn×n,0 ∈ Rn×n and are assumed to be known.

A. Time Update
Given xn,0, the minimum covariance estimate of the state

at a future time t in the absence of measurements is given

by x̂n(t) = E {xn(t)|x̂n(t0) = xn,0}. This estimate satisfies
the differential equation ˙̂xn(t) = E {fn(xn(t), t)}, which is
typically approximated as

˙̂xn(t) ≈ fn(x̂n(t), t). (1)

Hence, in the absence of measurements, the state estimate
is propagated using (1). The covariance matrix of the state
is given by Pn×n(t) = E {∆xn(t)∆xT

n(t)} ∈ Rn×n, where
∆xn(t) = xn(t)− x̂n(t) ∈ Rn is the state error. As a first-
order approximation, the derivative of the state error is given
by d

dt∆xn(t) = Fn×n(t)∆xn(t) + Gn×p(t)wp(t) and the
covariance matrix of the state satisfies the Riccati equation

Ṗn×n=Fn×nPn×n+Pn×nF
T
n×n+Gn×pQp×pG

T
n×p, (2)

where

Fn×n(t),
∂fn(xn, t)

∂xn

∣∣∣∣
x̂n(t)

, Gn×p(t),gn×p(x̂n(t), t). (3)

In the absence of measurements, the covariance matrix of
the state is propagated using (2).

B. Measurement Update
Assume that a measurement is taken at time tk that is

related with the state of the EKF through the nonlinear
output equation zm(tk) = hm(xn(tk)) + vm(tk) ∈ Rm,
where vm(tk) ∈ Rm is the measurement noise assumed
to be a discrete Gaussian white-noise process, whose mean
and covariance are given by E {vm(tk)} = 0m×1 and
E {vm(tk)vT

m(t`)} = Rm×m(tk)δtkt` , where Rm×m(tk) ∈
Rm×m is a symmetric positive definite matrix. Immediately
following the measurement at time tk, the minimum variance
estimate of xn(tk) is given by

x̂+n (tk) = x̂−n (tk) + ∆?x̂n(tk), (4)

where ∆?x̂n(tk) = Kn×m(tk)[zm(tk) − ẑm(tk)] is the
optimal Kalman state update, ẑm(tk) = E {zm(tk)} ≈
hm(x̂−n (tk)), x̂−n (tk) and x̂+n (tk) are the predicted values of
the state immediately before and after the measurement, and
Kn×m(tk) is the Kalman gain. The Kalman gain is given by

Kn×m=P−
n×nH

T
m×n[Hm×nP

−
n×nH

T
m×n+Rm×m]−1, (5)

where P−
n×n(tk) is the predicted state covariance matrix

immediately before the measurement and

Hm×n(tk) =
∂hm(xn)

∂xn

∣∣∣∣
x̂−
n (tk)

∈ Rm×n (6)

is the measurement sensitivity matrix. Immediately af-
ter the measurement, the state covariance matrix is
given by P+

n×n = (In×n − Kn×mHm×n)P−
n×n(In×n −

Kn×mHm×n)T +Kn×mRm×mK
T
n×m.

III. DQ-MEKF
A. Mathematical Preliminaries

1) Quaternions: A quaternion can be represented as the
ordered pair q = (q0, q), where q = [q1 q2 q3]T ∈ R3 and
q0 ∈ R. The basic operations between quaternions are:

Addition: a+ b = (a0 + b0, a+ b),

Multiplication by a scalar: λa = (λa0, λa),



Multiplication: ab=(a0b0 − a · b, a0b+ b0a+ a× b),
Conjugation: a∗ = (a0,−a),

Cross product: a× b = (0, b0a+ a0b+ a× b),

where λ ∈ R. Note that the quaternion multiplication is not
commutative. The quaternions (1, 03×1) and (0, 03×1) will
be denoted by 1 and 0, respectively.

The bijective mapping between the set of quaternions
and R4 will be denoted by [ · ] : H → R4, where [q] =
[q0 q1 q2 q3]T. Using this mapping, the cross product of
a ∈ Hv = {q ∈ H : q0 = 0} with b ∈ Hv can be computed
as [a× b] = [a]×[b], where [ · ]× : Hv → R4×4 is defined as

[a]× =

[
0 01×3

03×1 a×

]
, where a× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .
Likewise, the left quaternion multiplication of a ∈ H with
b ∈ H can be computed as [ab] = [[a]][b], where [[ · ]] : H →
R4×4 is defined as

[[a]] =

[
a0 −aT

a [ã]

]
, where [ã] = a0I3×3 + a×. (7)

The relative attitude of a frame fixed to a body with respect
to another frame, say, the I-frame, can be represented by the
unit quaternion qB/I = (cos(φ2 ), sin(φ2 )n̄), where the B-frame
is said to be rotated with respect to the I-frame about the
unit vector n̄ by an angle φ. A unit quaternion is defined as
a quaternion that belongs to the set Hu = {q ∈ H : qq∗ =
q∗q = 1}. From this constraint, assuming that −180 <
φ < 180 deg, the scalar part of a unit quaternion can be
computed from q0 =

√
1− ‖q‖2. The coordinates of a vector

in the B-frame, vB, can be calculated from the coordinates
of that same vector in the I-frame, vI, and vice-versa, via
vB = q∗B/Iv

IqB/I and vI = qB/Iv
Bq∗B/I, where vX = (0, vX). This

is equivalent to vB = R(qB/I)v
I and vI = R(q∗B/I)v

B, where
R(qX/Y) is the rotation matrix formed from qX/Y.

2) Dual Quaternions: A dual quaternion is defined as q =
qr + εqd, where ε is the dual unit defined by ε2 = 0 and
ε 6= 0. The quaternions qr, qd ∈ H are the real part and
the dual part of the dual quaternion, respectively. The basic
operations between dual quaternions are [4]:

Addition: a+ b = (ar + br) + ε(ad + bd),

Multiplication by a scalar: λa = (λar) + ε(λad),

Multiplication: ab = (arbr) + ε(arbd + adbr),

Conjugation: a∗ = a∗r + εa∗d,

Cross product: a×b=ar×br+ε(ad×br+ar×bd).

Note that the dual quaternion multiplication is not commuta-
tive. The dual quaternions 1+ ε0 and 0+ ε0 will be denoted
by 1 and 0, respectively.

The bijective mapping between the set of dual quaternions
and R8 will be denoted by [ · ] : Hd → R8, where [q] =
[[qr]

T[qd]
T]T. Using this mapping, the left dual quaternion

multiplication of a ∈ Hd with b ∈ Hd can be computed
as [ab] = [[a]][b], where [[ · ]] : Hd → R8×8 is defined as

[[a]] =

[
[[ar]] 04×4

[[ad]] [[ar]]

]
. (8)

Finally, it is convenient to define [ ·̃ ] : Hd → R6×6 and
·× : Hd → R6×6 as, respectively,

[ã] =

[
[ãr] 03×3

[ãd] [ãr]

]
and a× =

[
a×r 03×3

a×d a×r

]
.

Similarly, ( · )r : Hd → H is defined as (a)r = ar, ( · )d :
Hd → H is defined as (a)d = ad, and · : Hd → R6 is
defined as a = [ar

T ad
T]T ∈ R6.

The pose of a body frame with respect to another frame,
say, the I-frame, can be represented by a unit quaternion
qB/I ∈ Hu and by a translation vector rI

B/I ∈ R3 or rB
B/I ∈ R3,

where rX
Y/Z is the translation vector from the origin of the Z-

frame to the origin of the Y-frame expressed in the X-frame.
Alternatively, this pose can be represented more compactly
by the unit dual quaternion [4]

qB/I = qB/I,r + εqB/I,d = qB/I + ε 12r
I
B/IqB/I = qB/I + ε 12qB/Ir

B
B/I, (9)

where rX
Y/Z = (0, rX

Y/Z). Given qB/I, the position of the body
frame with respect to the I-frame can be obtained in I-frame
coordinates from rI

B/I=2qB/I,dq
∗
B/I and in B-frame coordinates

from rB
B/I=2q∗B/IqB/I,d. Note that whereas the relation between

rB
B/I and rI

B/I is quadratic in qB/I, qB/I,d is related linearly in qB/I

with rB
B/I and rI

B/I. A unit dual quaternion is defined as a dual
quaternion that belongs to the set Hud = {q ∈ Hd : qq∗ =
q∗q = 1}. Assuming that −180 < φ < 180 deg, the scalar
parts of the real and dual parts of a unit dual quaternion can
be computed from their respective vector parts from

qr,0 =
√

1− ‖qr‖2 and qd,0 =
−qrTqd
qr,0

. (10)

The rotational and translational kinematic equations of the
body frame with respect to another frame can be written
compactly in terms of dual quaternions as [4]

q̇B/I=
1
2ω

I
B/IqB/I=

1
2qB/Iω

B
B/I, (11)

where ωX
Y/Z is the dual velocity of the Y-frame with respect

to the Z-frame expressed in the X-frame, ωB
B/I , ωB

B/I + εvB
B/I,

ωI
B/I , ωI

B/I + ε(vI
B/I − ωI

B/I × rI
B/I), ωX

Y/Z = (0, ωX
Y/Z), ωX

Y/Z is the
angular velocity of the Y-frame with respect to the Z-frame
expressed in the X-frame, vX

Y/Z = (0, vX
Y/Z), and vX

Y/Z is the
linear velocity of the origin of the Y-frame with respect to
the Z-frame expressed in the X-frame.

B. Angular and Linear Velocity Measurement Model

The dual velocity measurement model is defined analo-
gously to the angular velocity measurement model typically
used in literature [1], [2], i.e.,

ωB
B/I,m = ωB

B/I + bω + ηω, (12)

where ωB
B/I,m = ωB

B/I,m + εvB
B/I,m ∈ Hvd, ωB

B/I,m = (0, ωB
B/I,m),

ωB
B/I,m is a measurement of ωB

B/I, v
B
B/I,m = (0, vB

B/I,m), vB
B/I,m

is a measurement of vB
B/I, bω = bω + εbv is the dual bias,

bω = (0, bω), bω ∈ R3 is the bias of the angular velocity
measurement, bv = (0, bv), bv ∈ R3 is the bias of the linear
velocity measurement, ηω = ηω + εηv , ηω = (0, ηω), ηω ∈
R3 is the noise of the angular velocity measurement assumed
to be a Gaussian white-noise process, ηv = (0, ηv), and ηv ∈
R3 is the noise of the linear velocity measurement assumed



to be a Gaussian white-noise process with E {ηω} = 06×1,
E {ηω(t)ηT

ω(τ)}=Qω(t)δ(t− τ), where

Qω(t) =

[
Qω(t) Qωv(t)
Qωv(t) Qv(t)

]
∈ R6×6

is a symmetric positive semidefinite matrix. The dual bias is
not constant, but assumed to be driven by another Gaussian
white-noise process through

ḃω = ηbω
, (13)

where ηbω
= (0, ηbω ) + ε(0, ηbv ), E

{
ηbω

}
= 06×1,

E
{
ηbω

(t)ηT
bω

(τ)
}

= Qbω
(t)δ(t− τ), and

Qbω
(t) =

[
Qbω (t) Qbωbv (t)
Qbωbv (t) Qbv (t)

]
∈ R6×6

is a symmetric positive semidefinite matrix.
If the I-frame is inertial, ωB

B/I should be interpreted as
the inertial angular and linear velocities of the satellite. In
that case, ωB

B/I can be measured from a combination of, e.g.,
rate-gyros, Doppler radar, and GPS. On the other hand, if
the I-frame is not inertial, ωB

B/I should be interpreted as the
relative angular and linear velocities of the satellite with
respect to a moving frame, for example, a frame attached
to another satellite. In that case, ωB

B/I can be measured from
a combination of, e.g., rate-gyros on both satellites [7],
Doppler radar, differential GPS, and LIDAR.

C. Derivation of the DQ-MEKF
The state and process noise of the DQ-MEKF are initially

selected as x16 = [[δqB/I]
T, [bω]T]T ∈ R16 and w16 =

[[ηω]T, [ηbω
]T]T ∈ R16, where the dual error quaternion

δqB/I ∈ Hud is defined analogously to the error quaternion [1]
δqB/I = q̂∗B/IqB/I ∈ Hu as δqB/I = q̂∗B/IqB/I ∈ Hud , i.e., δqB/I is the
dual quaternion between the actual dual quaternion qB/I ∈ Hud
and its current best estimate q̂B/I ∈ Hud . Analogously to the
propagation of q̂B/I ∈ Hu in [3], q̂B/I is propagated using

d

dt
(q̂B/I) ≈ 1

2 q̂B/Iω̂
B
B/I, (14)

where, from (12),

ω̂B
B/I , E {ωB

B/I} = ωB
B/I,m − b̂ω, (15)

with b̂ω , E {bω} and

d

dt

(
b̂ω

)
= E

{
ηbω

}
= 0. (16)

The approximation in (14) is a result of using the typical
EKF approximation given by (1) [3]. Note that the current
best guess of qB/I, given by q̂B/I, is not defined as the standard
expected value of the random variable qB/I as this would
require the expectation to be defined with respect to a non-
trivial probability density function in Hud . As shown in [11],
even the definition of probability density function on Hu is
not trivial. The reader is referred to [11] for a discussion of
possible probability density functions in Hu.

Analogously to [3], for −180 < φ < 180 deg, δqB/I

is parameterized by δqB/I and the expected value of δqB/I

is required to be zero, i.e., E
{
δqB/I

}
= 06×1. Hence,

E
{
δqB/I

(
δqB/I

)}
= 1.

To determine the state equation of the DQ-MEKF, the
time derivative of δqB/I needs to be calculated. Taking the
time derivative of δqB/I yields d

dt (δqB/I) = d
dt (q̂

∗
B/I)qB/I +

q̂∗B/I
d
dt (qB/I). Substituting in (11) and (14) yields d

dt (δqB/I) ≈
1
2 (ω̂B̂

B/I)
∗q̂∗B/IqB/I+

1
2 q̂

∗
B/IqB/Iω

B
B/I = − 1

2 ω̂
B̂
B/IδqB/I+

1
2δqB/Iω

B
B/I. Com-

bining (15) and (12) yields ωB
B/I ≈ ω̂

B̂
B/I+b̂ω−bω−ηω . Finally,

inserting the previous equation in the expression for d
dt (δqB/I)

results in d
dt (δqB/I)≈ 1

2 (δqB/I(ω̂
B̂
B/I+b̂ω−bω−ηω)−ω̂B̂

B/IδqB/I).
At this point, as in the derivation of the Q-MEKF, reduced

state and process noise vectors are selected, namely, x12 =
[δqB/I

T
, b

T

ω]T ∈ R12 and w12 = [ηT
ω,η

T
bω

]T ∈ R12. The
state equations of the DQ-MEKF are then given by the
vector parts of d

dt (δqB/I) and (13), yielding f12(x12(t), t) and
g12×12(x12(t), t) equal to, respectively,[

1
2
(δqB/I(ω̂

B̂
B/I+b̂ω−bω−ηω)−ω̂

B̂
B/IδqB/I)

06×1

]
,

[
− 1

2
[δ̃qB/I] 06×6

06×6 I6×6

]
.

By replacing δqB/I,r,0 and δqB/I,d,0 through (10) in
f12(x12(t), t) and g12×12(x12(t), t) and using (3), F12×12(t)
and G12×12(t) can be determined to be, respectively,[

−ω̂B
B/I

×
− 1

2I6×6

06×6 06×6

]
and

[
− 1

2I6×6 06×6

06×6 I6×6

]
.

1) Time Update: For the time update of the DQ-MEKF,
q̂B/I, ω̂

B
B/I, and b̂ω are propagated using (14), (15), and (16),

respectively, given q̂B/I(t0) and b̂ω(t0). Numerical errors in
the propagation of q̂B/I through (14) can result in the violation
of the algebraic constraints associated with Hud . Hence, after
each integration step, these algebraic constraints are enforced
by calculating [qB/I,r] = [qB/I,r]/‖[qB/I,r]‖ and [qB/I,d] = (I4×4−
[qB/I,r][qB/I,r]

T
/
‖[qB/I,r]‖2 )[qB/I,d]. The covariance matrix of x12

is propagated according to (2) given P12×12(t0).
2) Measurement Update: Here, it is assumed that a mea-

surement of qB/I is available. If the I-frame is a moving
frame, this measurement can come, for example, from a
vision-based system. If the I-frame is an inertial frame, this
measurement can come, for example, from a combination of
a star sensor and a GPS. If the pose measurement is available
in terms of a quaternion and a translation vector, then the
corresponding dual quaternion can be computed from (9).
Then, the output equation is defined analogously to the out-
put equation used in [7], [3] when a quaternion measurement
is available, i.e., (q̂−B/I(tk))∗qB/I,m(tk) = δqB/I(tk) + v6(tk).
Using (6) to calculate the measurement sensitivity matrix
yields H6×12(tk) = [I6×6 06×6]. In summary, for the
measurement update of the DQ-MEKF, the Kalman gain is
calculated from (5) and the optimal Kalman state update is
calculated from

∆?x̂12(tk),

[
∆?δq̂B/I(tk)

∆?b̂ω(tk)

]
=K12×6(q̂−B/I(tk))∗qB/I,m(tk).

The estimate of the state at time tk after the measurement is
then calculated from

q̂+B/I(tk) = q̂−B/I(tk)∆?δq̂B/I(tk), (17)

b̂
+

ω(tk) = b̂
−
ω(tk) + ∆?b̂ω(tk), (18)

where ∆?δq̂B/I is the unit dual quaternion with vector part
given by ∆?δq̂B/I(tk) and scalar part given by (10). Finally,



P+
12×12 is computed. Note that whereas (18) is a direct

application of (4), (17) is not. Since ∆?δq̂B/I(tk) is a unit dual
quaternion, q̂+B/I(tk) is calculated using the dual quaternion
multiplication, making the proposed EKF multiplicative.

Any measurement that is a nonlinear function of the state
of the DQ-MEKF can be used in the measurement update.
If another measurement is used, only the measurement sen-
sitivity matrix needs to be recalculated. For example, if the
measurements are qB/I,m and rI

B/I,m, then the output equation
is defined as[

(q̂−B/I)∗qB/I,m

rI
B/I,m

]
=

[
δqB/I,r

2 (q̂B/IδqB/I)d δq
∗
B/Iq̂B/I

]
+v6. (19)

The new sensitivity matrix can be determined to be

H6×12(tk) =

[
I3×3 03×3 03×3 03×3

03×3 2R ((q̂−B/I)
∗) 03×3 03×3.

]
. (20)

D. DQ-MEKF Without Velocity Measurements

A special case of particular interest is when pose mea-
surements are available, but angular and linear velocity
measurements are not. Although velocity measurements are
not available, velocity estimates might be required for pose
control [4]. In this section, it is shown how this special case
can be handled by modifying the inputs and parameters of
the DQ-MEKF algorithm, without any modifications to the
structure and basic equations of the DQ-MEKF algorithm.

As before, the I-frame may or may not be inertial.
However, this version of the DQ-MEKF is specially suited
for satellite proximity operations where the relative pose is
measured using vision-based systems, which typically do not
provide relative velocity measurements. In this scenario, the
I-frame is the moving frame of the target satellite.

If angular and linear velocity measurements are not avail-
able, but estimates are required, ωB

B/I,m and ηω are set to
zero in (12). This results in bω = −ωB

B/I and Qω = 06×6.
The dual velocity estimate is still given by (15), which now
has the form ω̂B̂

B/I = −b̂ω . The time derivative of bω is still
calculated as in (13). However, since bω is now expected to
be time-varying and not constant, the effect of the noise ηbω

might have to be increased by increasing Qbω
.

IV. EXPERIMENTAL RESULTS

In this section, the DQ-MEKF without velocity mea-
surements is validated experimentally on the Autonomous
Spacecraft Testing of Robotic Operations in Space (AS-
TROS) facility at the School of Aerospace Engineering of
Georgia Tech [12]. This experimental facility includes a 5-
DOF platform supported on hemispherical and linear air-
bearings moving over a flat epoxy floor in order to simulate
as best as possible the frictionless environment of space. It
also includes a VICON motion capture system mounted on
an aluminum grid above the experimental area. The VICON
system measures the pose of the platform with respect to a
reference frame fixed to the room. The standard deviation of
these measurements is smaller than 7× 10−5 and 1 mm for
qB/I,m and r̄I

B/I,m, respectively.
The ground truth for the pose was obtained from VICON

measurements at 100 Hz. The ground truth for the linear
velocity was obtained by passing the position measurements

through a Linear Time-Invariant (LTI) system with transfer
matrix H(s) = 3s

s+3I3×3. Finally, the ground truth for the
angular velocity was obtained by passing the quaternion
measurements through a LTI system with transfer matrix
H(s) = 3s

s+3I4×4 and by using the relation ωB
B/I = 2q∗B/Iq̇B/I.

The DQ-MEKF was fed pose measurements from the
VICON system at 0.5 Hz modeled through output equation
(19). The initial estimate of the state is given in Table I.
The same table also shows an a posteriori guess of the
initial state based on the measurements. The DQ-MEKF
was initialized with the covariance matrices: P12×12(0) =
1×10−9I12×12, Q12×12 = diag([0, 0, 0, 0, 0, 0, 1×10−3, 1×
10−3, 1×10−3, 1×10−1, 1×10−1, 1×10−1]), and R6×6 =
diag([1.4×10−6, 1.4×10−6, 1.4×10−6, 2.25×10−6, 2.25×
10−6, 2.25× 10−6]).

TABLE I
INITIAL ESTIMATE AND A POSTERIORI GUESS OF THE STATE.

Variable Initial Estimate Best A Posteriori Guess
qB/I(0) [0.71, 0, 0, 0.71]T [0.80,−0.02,−0.02, 0.60]T

r̄I
B/I(0) [−0.5, 2,−1]T (m) [−0.53, 2.04,−0.99]T (m)
b̄ω(0) [0, 0, 0]T (deg/s) [0, 0, 0]T (deg/s)
b̄v(0) [0, 0, 0]T (m/s) [0, 0, 0]T (m/s)

The pose estimated by the DQ-MEKF is compared with
the ground truth in Fig. 1. Note that the motion only starts
around 20 sec after the beginning of the experiment.
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Fig. 1. Estimated and true pose.

The pose estimation error obtained with the DQ-MEKF is
plotted in Fig. 2. Note that the pose error increases at around
20 sec, when the motion starts. The same figure also shows
the pose estimation error obtained with two alternative EKF
formulations. The first alternative EKF formulation, hereby
referred to as the QV-AEKF, is an additive EKF, where the
state contains the vector part of the unit error quaternion and
the position vector of the body with respect to the inertial
frame expressed in the body frame. The second alternative
EKF formulation, hereby referred to as the SQV-AEKF, is
essentially the QV-AEKF split into two additive EKFs, one



for the attitude and another one for the position. The QV-
AEKF and SQV-AEKF are derived in detail in [13]. In terms
of computational resources, the DQ-MEKF, the QV-AEKF,
and the SQV-AEKF require the propagation of 92, 91, and
55 states, respectively. For the comparison between the filters
to be fair, the three filters were fed the same measurements,
were initialized with the same initial estimate of the state,
and were tuned with the same covariance matrices. The linear
and angular velocity estimation errors obtained with the three
filters are also shown in Fig. 2.
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Fig. 2. Pose and velocity estimation error.

The Root-Mean-Square (RMS) attitude, position, angular
velocity, and linear velocity estimation errors after 20 sec
obtained with the three filters are given in Table II. Note
that the RMS attitude and angular velocity estimation errors
obtained with the three filters are the same. This is not
surprising since the DQ-MEKF, the QV-AEKF, and the
SQV-AEKF represent and update the attitude in the same
way and the attitude is independent from the position. The
SQV-AEKF exhibits the highest RMS position and linear
velocity estimation errors. This is understandable since the
DQ-MEKF and the QV-AEKF take into consideration the
fact that the position vector of the body with respect to
the inertial frame expressed in the body frame depends on
the attitude of the body, whereas the SQV-AEKF does not.
Moreover, the RMS position and linear velocity estimation
errors obtained with the DQ-MEKF are smaller than the ones
obtained with the QV-AEKF. This can be justified in part by
the fact that the relation between rB

B/I and rI
B/I is quadratic in

qB/I, whereas the relation between qB/I,d and rI
B/I is linear in qB/I.

Hence, the linearization error committed when linearizing the
output equations of the QV-AEKF and of the DQ-MEKF
with respect to δqB/I is smaller in the DQ-MEKF case.

V. CONCLUSION

This paper proposes a Dual Quaternion Multiplicative Ex-
tended Kalman Filter for pose estimation that is an extension
of the well-known and widely used Quaternion Multiplicative

Extended Kalman Filter for spacecraft attitude estimation. By
using the dual quaternion multiplication and the concept of
error unit dual quaternion, the two algebraic constraints of
unit dual quaternions are automatically satisfied during the
measurement update of the DQ-MEKF and the number of
states is reduced from eight to six. The experimental results
show that the DQ-MEKF does not encounter singularities
and is accurate, precise, and fast enough for operational use.
Moreover, when compared with two other EKF formulations,
the experimental results suggest that the DQ-MEKF might
be the best formulation if the measurements are expressed in
a different reference frame than the variable to be estimated.
This is the case, for example, when one needs the inertial
position of a satellite expressed in the body frame, e.g., to
implement a control law, but the measurements are expressed
in the inertial frame, like the inertial position measurements
produced by a GPS.

TABLE II
RMS ESTIMATION ERRORS AFTER 20 SEC.

RMS Estimation Error DQ-MEKF QV-AEKF SQV-AEKF
Attitude (deg) 2.22 2.22 2.22
Position (mm) 70.8 69.5 122.8
Angular Velocity (deg/s) 1.91 1.91 1.91
Linear Velocity (mm/s) 22.7 22.2 80.7
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