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Abstract— In this paper, we study the problem of minimum-
time, and minimum-energy speed profile optimization along a
given path, which is a key step for solving the optimal path
tracking problems for a particular class of dynamical systems.
We focus on characterizing the optimal switching structure
between extremal controls using optimal control theory, and
present semi-analytical solutions to both problems. It is shown
that the optimal solutions of these two problems are closely
related.

Index Terms— Optimal control, path tracking, minimum
energy, minimum time

I. INTRODUCTION

The minimum-time path-tracking problem for robotic ma-
nipulators, ground vehicles, and aircraft has been studied
in [8], [6], [7], [9], [11]. The optimal solution to these
problems can help improve plant productivity [8], [6], [7],
racing car performance [9], or achieve faster aircraft landing
in case of an emergency [11], [14]. These solutions maximize
pointwise the speed along the path, and do not contain any
singular arcs. When tracking time is not of primary concern,
it is often desirable to minimize the energy or the fuel con-
sumption of the system. Along this direction, the minimum-
work problem has been studied in [1], [5], [3]. Unlike the
solution to the minimum-time problem, minimum-work or
minimum-energy solutions usually contain singular control
arcs, in addition to the bang-bang control arcs. It is observed
that for all the dynamical systems mentioned above, the
optimal path tracking problem can be simplified to a speed
profile optimization problem subject to speed and control
constraints and boundary conditions. After the optimal speed
is obtained, the other state and control variables can be
obtained using inverse dynamics. In this paper, we analyze
the basic speed optimization problem showing up in these
different applications.

The main contributions of this paper include: a) The identi-
fication of optimal switching structures in the minimum-time
and minimum-energy solutions, and b) The characterization
of the relation between optimal solutions of minimum-time,
maximum-time, and minimum-energy path-tracking prob-
lems.

II. PROBLEM FORMULATION

The system dynamics considered in this paper have the
following form

ṡ = v,
v̇ = −d(v, s) + u,

(1)
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where s is the path coordinate with s ∈ [s0, sf ] ⊂ R,
and v is the speed at which the system moves along the
path, whereas d : R2 → R is a function representing
the accelerations (e.g., drag) affecting the speed along the
path. The system is subject to position-dependent speed
constraints 0 ≥ vmin(s) ≤ v ≤ vmax(s), and control
constraints umin(s) ≤ u(s) ≤ umax(s). We would like to
find u that minimizes a certain cost function while keeping
all constraints satisfied. Despite its simple form, system (1)
is suitable for many industrial and transportation systems,
including those mentioned in the Introduction.

By letting E = v2/2 and by using the path length as
the new independent variable, then (1) reduces to a single
differential equation along the path

E′(s) = −D(E, s) + u, (2)

where (·)′ denotes the derivative with respect to s. We will
assume that D(E, s) = d(

√
2E, s) satisfies the following

assumptions.
Assumption 1: For all E ∈ [v2

min(s)/2, v2
max(s)/2], and

s ∈ [s0, sf ], the following conditions hold

i) D(E, s) is at least twice differentiable with respect to
E, and D(E, s), ∂D/∂E and ∂2D/∂E2 are continu-
ous with respect to s.

ii)
∂2D(E, s)

∂E2
+

3

2E

∂D(E, s)

∂E
> 0.

Assumption 1 is a necessary condition for the main
theoretical results later in this paper. In particular, condition
ii) implies that v2∂d(v, s)/∂v is monotonically increasing
with respect to v. This assumption holds in many cases, for
example, when d is the summation of aerodynamic drag and
the component of the gravity forces.

We consider optimal path tracking problems of the form
Problem 1 (Optimal Control for Path Tracking): Solve

min
u

J(tf , E, u), (3)

subject to E′(s) = −D(E, s) + u, (4)

t′(s) =
1√

2E(s)
, (5)

g(s) ≤ E(s) ≤ g(s), (6)

E(s0) = v2
0/2, E(sf ) = v2

f/2, (7)
umin(s) ≤ u(s) ≤ umax(s), (8)
t(s0) = 0, t(sf ) = tf , (9)

where g(s) = v2
max(s)/2 and g(s) = v2

min(s)/2 are bounds
on the specific kinetic energy E. It is assumed that g and g
are piecewise differentiable on [s0, sf ].



III. MINIMUM-TIME PATH TRACKING

The cost function for the minimum-time problem is

J(tf , E, u) = tf =

∫ sf

s0

ds√
2E(s)

.

When the state constraints (6) are not active, the Hamiltonian
of the optimal control Problem 1 is

H =
1√
2E

(λt + 1) + λE(−D(E, s) + u),

where λt and λE are the costate variables for the t and E
dynamics, respectively. The costate dynamics are given by

λ′t = −∂H
∂t

= 0, (10)

λ′E = −∂H
∂E

=
1

2
√

2
E−3/2(λt + 1) + λE

∂D(E, s)

∂E
. (11)

It follows that λt is constant, Since tf is free, λt ≡ 0
according to the transversality condition. The switching
function is

∂H

∂u
= λE .

According to the Pontryagin’s Maximum Principle (PMP), in
general, the optimal control u∗ may contain bang-bang con-
trol, singular control, and control arcs associated with active
state constraints, as described by the following expression

u∗(s) =



umin, for λE > 0, s ∈ [s0, sf ] \ K,
ũ(s), for λE = 0, s ∈ [s0, sf ] \ K,
umax, for λE < 0, s ∈ [s0, sf ] \ K,
uu(s), for s ∈ KU ,

ul(s), for s ∈ KL.

(12)

where ũ is the singular control, KU = {s ∈ [s0, sf ]|E∗(s) =
g(s)}, KL = {s ∈ [s0, sf ]|E∗(s) = g(s)}, and K =
KU ∪ KL. At those points where g (respectively, g) is
differentiable,

uu(s) = g′(s) +D(g(s), s) (13)

and
ul(s) = g′(s) +D(g(s), s). (14)

At the points where g (respectively, g) is discontinuous
and/or non-differentiable, the left and right limits of uu and
ul can be defined similarly.

Proposition 1: The time-optimal control solution does not
contain any singular control.

Proof: It is sufficient to show that there does not exist
any sub-interval [sa, sb] ⊆ [s0, sf ] on which λE(s) ≡ 0
and g

l
(s) < E(s) < gu(s) (strict inequalities) for all

s ∈ [sa, sb]. Suppose, ad absurdum, that λE(s) ≡ λ′E(s) ≡ 0
for all s ∈ [sa, sb], and the state constraints are not active
on [sa, sb]. It follows that on [sa, sb], equation (11) yields
0 = E−3/2/2

√
2 > 0, which is impossible. Hence λE

cannot remain constantly zero on any interval, and the proof
is complete.

Proposition 2: The optimal control u∗(s) is bang-bang,
and does not contain any switch from umin to umax on
[s0, sf ] \ K.

Proposition 3: Assume g(s) 6= g(s) and ul(s) < umax(s)
for all s ∈ [s0, sf ]. Let E∗(s) be the optimal kinetic energy
solution to the min-time problem. Then the set KL does not
contain any nontrivial interval.

The proofs of Proposition 2 and Proposition 3 can be
found in [10].

Corollary 1: The time optimal control u∗ can be con-
structed as a combination of umax, umin and uu.

Based on the theoretical results in this section, an efficient
algorithm has been proposed in [14] to solve Problem 1. This
algorithm can be modified to also provide the maximum tf
along a given geometric path. The details are omitted due to
the page limitations. As will be shown later in this paper, the
maximum time solution, although not very useful in practice,
is important for constructing minimum energy solutions.

IV. MINIMUM-ENERGY PATH TRACKING

Next, we consider the minimization of the energy con-
sumed for tracking the path:

Problem 2 (Minimum-energy path tracking):

min J(tf , v, u) =

∫ tf

0

v(t)u(t) dt =

∫ sf

s0

u(s) ds (15)

subject to the same constraints as in Problem 1.
Without loss of generality, we assume that tf is fixed. Note
that v(t)u(t) represents the power input to the system.

A. Optimality Conditions
Consider first the case when the state constraints (6) are

not active. Then the Hamiltonian is

H = (λE + 1)u+
λt√
2E
− λED(E, s).

The costate dynamics are

λ′t = 0, λ′E =
1

2
√

2
E−3/2λt + λE

∂D(E, s)

∂E
. (16)

Therefore, the costate λt is constant. The switching function
is λE + 1. By PMP, the extremal control is given by

u =

 umax, 1 + λE < 0,
ũ, 1 + λE = 0,
umin, 1 + λE > 0,

(17)

where ũ is the singular control. Suppose that the optimal
specific kinetic energy E∗ contains a singular arc represented
by Ẽ, i.e., E∗(s) = Ẽ(s) on some subinterval of [s0, sf ].
For notational convenience, let us denote

∂kD(Ẽ, s)

∂Ek
=
∂kD̃

∂Ek
, k = 1, 2,

and let λ∗t be the optimal costate value. Since the switch-
ing function is identically zero along the singular arc, its
derivative must also vanish, which yields (λE = −1)

d

ds

(
∂H

∂u

)
= −∂D̃

∂E
+

1

2
√

2
Ẽ−3/2λt ≡ 0, (18)

from which the singular specific kinetic energy profile can
be computed. For notational convenience, equation (18) is
rewritten as

P (Ẽ(s), s) = λ∗t , (19)



where, for any E > 0,

P (E, s) = 2
√

2E3/2 ∂D

∂E

∣∣∣∣
(E(s),s)

. (20)

Proposition 4: Let E∗(s) be the optimal specific kinetic
energy profile for the energy-optimal problem with corre-
sponding optimal costate value λ∗t . Let the function Ẽ be
defined as in (19). Then, for all s, P (E∗(s), s) > λ∗t if and
only if E∗(s) > Ẽ(s), and P (E∗(s), s) < λ∗t if and only if
E∗(s) < Ẽ(s).

Proof: Note that

∂

∂E

(
E3/2 ∂D

∂E

)
= E3/2

(
∂2D

∂E2
+

3

2E

∂D

∂E

)
> 0,

which is positive according to Assumption 1. Therefore,
E3/2(∂D/∂E) increases monotonically with respect to E
for any fixed s ∈ [s0, sf ]. The following expression holds
from the definition of P and λ∗t :

P (E∗(s), s)− λ∗t = 2
√

2

(
E∗3/2 ∂D(E∗, s)

∂E
− Ẽ3/2 ∂D̃

∂E

)
,

and the claim of this proposition follows from the mono-
tonicity of E3/2(∂D(E, s)/∂E) with respect to E.

With E∗(s), λ∗t and Ẽ(s) as in Proposition 4, the singular
control ũ can be obtained by

ũ(s) = Ẽ′(s) +D(Ẽ(s), s). (21)

According to the PMP, when tf is free, we have λ∗t = 0
following the transversality condition at tf . When tf is fixed,
we need to first calculate the optimal value of λ∗t .

B. Optimality of the Singular Arcs
An admissible singular control ũ(s), in addition to the

constraint umin ≤ ũ(s) ≤ umax, must satisfy the generalized
Legendre-Clebsch condition [2]

∂

∂u

[
d2

ds2

(
∂H

∂u

)]
≤ 0, (22)

if it is to be part of the optimal trajectory. Along the singular
arc, differentiating the Hamiltonian with respect to s, one
obtains

d2

ds2

(
∂H

∂u

)
= λ′E

∂D̃

∂E
+

(
λE

∂2D̃

∂E2
− 3

4
√

2
Ẽ−5/2λ∗t

)
Ẽ′.

Using (4) and the fact that λE = −1 along the singular arc,
it follows that

∂

∂u

[
d2

ds2

(
∂H

∂u

)]
= −∂

2D̃

∂E2
− 3

4
√

2
Ẽ−5/2λ∗t . (23)

Since Ẽ(s) satisfies (19), it follows that

λ∗t = 2
√

2Ẽ3/2 ∂D̃

∂E
, (24)

By eliminating λ∗t from (23), and by using equation (19),
equation (23) can be written as:

∂

∂u

[
d2

ds2

(
∂H

∂u

)]
= −∂

2D̃

∂E2
− 3

2Ẽ

∂D̃

∂E
, (25)

which is negative by Assumption 1. Hence, along the singular
arcs, the generalized Legendre-Clebsch condition is satisfied
when Assumption 1 is valid, in which case these arcs can
be part of the optimal trajectory.

C. Optimal Switching Structure Involving Singular Arcs
When solving an optimal control problem, it is a common

practice to assume a certain fixed switching structure. This
approach, although convenient, may lead to a suboptimal
solution. According to the following theorem, we can actu-
ally identify the optimal switching structure for the energy-
optimal path tracking problem.

Theorem 1: Let E∗(s) be the energy-optimal specific ki-
netic energy profile, let λ∗t be the optimal costate value,
and let Ẽ : [s0, sf ] → R+ be the function defined by
P (Ẽ(s), s) = λ∗t . Consider a subinterval (sa, sb) ⊂ [s0, sf ]
such that g(s) < E∗(s) < g(s) for all s ∈ (sa, sb).
If E∗(s) < Ẽ(s) (respectively, E∗(s) > Ẽ(s)) for all
s ∈ (sa, sb) ⊂ [s0, sf ], then the corresponding optimal
control u∗(s) does not contain any switching from umin to
umax (respectively, umax to umin) on (sa, sb).

Proof: Assume that E∗(s) < Ẽ(s) for all s ∈ (sa, sb),
and assume u∗(s) = umin on (sa, τ) and u∗(s) = umax on
(τ, sb), where τ ∈ (sa, sb) is the switching point from umin

to umax. Because the state constraints are not saturated on
(sa, sb), the optimal costate λ∗E is continuous on (sa, sb).
Since u∗(s) = umin on (sa, τ) , and u∗(s) = umax on
(τ, sb), it follows that 1 + λ∗E(s) > 0 on (sa, τ) and
1+λ∗E(s) < 0 on (τ, sb) according to (17), and λ∗E(τ) = −1
by the continuity of λ∗E .

According to equation (16), the derivative of the costate
at τ is given by

λ∗E
′(τ) = λ∗E(τ)

∂D(E∗, τ)

∂E
+

1

2
√

2
E∗−3/2(τ)λ∗t

= − 1

2
√

2
(E∗)−3/2(τ) (P (E∗(τ), τ)− λ∗t ) ,

where (19) and (20) are used for the derivation. Following
Proposition 4, λ∗E

′(τ) > 0 since the above expression is
positive when E∗(τ) < Ẽ(τ). Since ∂D/∂E is continuous
with respect to s, λ∗E

′(s) is also continuous with respect to
s. Hence, λ∗E

′(s) > 0 in a neighborhood of τ . However, this
implies that given 1+λ∗E(s) > 0 on (sa, τ), there exists ε > 0
such that 1 + λ∗E(s) > 0 for all s ∈ (τ, ε) ⊆ (τ, sb), which
is a contradiction to the fact that 1 + λ∗E(s) < 0 on (τ, sb).
Therefore, if E∗(s) < Ẽ(s) the optimal thrust contains no
switch from umin to umax on (sa, sb). The proof for the case
E∗(s) > Ẽ(s) is similar, and hence it is omitted.

Theorem 1 narrows down the possible switching com-
binations of the optimal control u∗ for the energy-optimal
problem. The valid switching structures are illustrated in
Fig. 1(a). In contrast, the switching structures in Fig. 1(b)
are not optimal.

D. State Constraints and the Relaxed Problem
When either the upper or lower bound of the state con-

straint (6) is active along a certain part of the optimal
specific kinetic energy solution E∗, this part of E∗ we
have a state constrained arc. For the corresponding state
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(a) Optimal switchings.
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(b) Non-optimal switchings.

Fig. 1. Possible switching structures.

constrained control it is necessary to identify the intervals
on which state constraints (6) are active, which is usually
not straightforward.

In this section, we formulate a relaxed version of Prob-
lem 2 by partially relaxing the state constraints (6) on certain
intervals. The optimal solution to this relaxed problem can
be determined in a semi-analytic way, and will be used in
the proof regarding the optimal solution to Problem 2.

Before introducing the relaxed problem, some additional
notation needs to be presented first. For ΓU ⊆ [s0, sf ], define

gΓU
(s) =

{
g(s), s ∈ ΓU ,
M, s ∈ [s0, sf ] \ ΓU ,

where M > 0 is a number large enough such that E(s) <
M is always satisfied on [s0, sf ] by any feasible specific
kinetic energy profile E(s). By choosing a subset ΓU of
interest and enforcing the state constraint E(s) ≤ gΓU

(s)
for all s ∈ [s0, sf ], it can be ensured that the optimal
solution E∗ satisfies E∗(s) ≤ g(s) on ΓU , while remaining
unconstrained on [s0, sf ] \ ΓU . Similarly, also define

g
ΓL

(s) =

{
g(s), s ∈ ΓL,
0, s ∈ [s0, sf ] \ ΓL.

By enforcing the constraint E(s) ≥ g
ΓL

(s) instead of the
constraint E(s) ≥ g(s), the later constraint is relaxed on
[s0, sf ] \ ΓL. Next, a modified version for Problem 2 is
introduced by relaxing the original state constraints (6) on
certain subintervals.

Problem 3 (Relaxed Min-Energy Path Tracking Problem):
Let ΓU ,ΓL ⊆ [s0, sf ]. Minimize the energy cost (15) subject
to constraints (4), (5), (7), (8), (9), and the state bounds

E(s)− gΓU
(s) ≤ 0, g

ΓL
(s)− E(s) ≤ 0. (26)

for all s ∈ [s0, sf ].
Similarly, one can form the relaxed minimum-time and

the relaxed maximum-time path tracking problem with state
constraints (26) instead of (6). For the sake of brevity, the
formal definitions for these problems are not presented here
since they are self-evident from the definition of Problem 3.

Since the unconstrained solution to an optimal control
problem has the same, or better, optimality characteristics
than a constrained one, a constraint is, in general, not
active unless it is violated by the optimal solution of the
unconstrained problem 1. This property is stated formally by
the next lemma.

1The only exception is the trivial case when along the unconstrained
optimal solution certain constraints are active but not violated.

Lemma 1: If the optimal solution of Problem 3 does not
violate constraints (6), then it is also an optimal solution for
Problem 2.

E. The Optimal Switching Structure Involving State-
Constrained Arcs

For an arbitrary geometric path, the energy-optimal control
u∗ for the minimum energy path tracking problem is com-
posed of bang-bang control umin and umax, singular control
ũ, and state constrained control uu and ul arcs.

Lemma 2: Let E∗U (s) be the minimum-time path-
following specific kinetic energy profile with flight time tmin,
and let E∗L(s) be the maximum-time path-following specific
kinetic energy profile with time tmax, subject to the same
boundary conditions and state constraints as in (4)-(8). Let
E∗(s) be the optimal specific kinetic energy profile for the
minimum-energy path-following problem with fixed time tf .
Then the following inequalities hold

tmin ≤ tf ≤ tmax, E∗L(s) ≤ E∗(s) ≤ E∗U (s), (27)

for all s ∈ [s0, sf ].
Proof: See [10].

According to Lemma 2, the fixed-time, energy-optimal
specific kinetic energy E∗ is bounded by the minimum-time
solution E∗U and the maximum-time solution E∗L. Further-
more, based on Theorem 1, it can be shown that E∗(s) =
E∗U (s) or E∗(s) = E∗L(s) on certain subintervals. This
property of E∗ is characterized by the following Lemma.

Lemma 3: Let E∗(s) be the optimal specific kinetic en-
ergy solution to Problem 2 and let Ẽ be defined on [s0, sf ]
by P (Ẽ(s), s) = λ∗t , where λ∗t is the corresponding optimal
costate value. Let E∗U (s) and E∗L(s) be the optimal specific
kinetic energy solutions to the minimum-time and maximum-
time path-tracking problems, respectively. Furthermore, let

ΓU = {s|E∗U (s) < Ẽ(s), s ∈ [s0, sf ]} (28)

ΓL = {s|E∗L(s) > Ẽ(s), s ∈ [s0, sf ]} (29)

and suppose that E∗(s) > g(s) for all s ∈ [s0, sf ] \ΓL, and
E∗(s) < g(s) for all s ∈ [s0, sf ]\ΓU . Then E∗(s) = E∗U (s)
for all s ∈ ΓU , and E∗(s) = E∗L(s) for all s ∈ ΓL.

Proof: First, it will be shown that E∗(s) = E∗U (s) for
all s ∈ ΓU . Let u∗U and u∗ be the thrust control associated
with E∗U and E∗, respectively. From Lemma 2, it follows that
E∗(s) ≤ E∗U (s) for all s ∈ [s0, sf ]. Assume, on the contrary,
that there exists τ ∈ ΓU such that E∗(τ) < E∗U (τ). Then by
the definition of ΓU , E∗(τ) < Ẽ(τ). Let q = inf{s|E∗(s) =
E∗U (s), s ∈ [τ, sf ]}. Since E∗(sf ) = E∗U (sf ), q is well-
defined. Similarly, let p = sup{s|E∗(s) = E∗U (s), s ∈
[s0, τ ]} and since E∗(s0) = E∗U (s0), p is also well-defined.
Note that E∗(s) < E∗U (s) for all s ∈ (p, q) by the fact
E∗(τ) < E∗U (τ), the definitions of p, q, and the continuity
of E∗ and E∗U (see Fig. 2). Since E∗(s) < E∗U (s) ≤ gw(s)
for all s ∈ (p, q), the upper bound of the state constraint (6)
is inactive along E∗ for s ∈ (p, q). Hence, u∗(s) can only
take the values of umax, umin, ũ(s), or uw(s) on (p, q).
Since E∗(τ) < Ẽ(τ), it is true that u∗(τ) 6= ũ(τ). Also,
since E∗(τ) < Ẽ(τ), it follows that τ /∈ ΓL, and therefore
E∗(τ) > g

w
(τ), and it follows that either u∗(τ) = umax or



u∗(τ) = umin. Next, it will be shown that neither of these
two options is possible.

E

s

Ẽ

E∗
U

ΓU

τ

E∗

qp γ

Fig. 2. Illustration for the proof of Lemma 3

First, consider the case u∗(τ) = umin. It is claimed that
E∗(s) < Ẽ(s) for all s ∈ (τ, q). To see this, assume that
E∗(s) ≥ Ẽ(s) for some s ∈ (τ, q). It then follows from the
fact E∗(τ) < Ẽ(τ) and the continuity of E∗ and Ẽ that the
equation E∗(γ) = Ẽ(γ) has at least one solution on (τ, q)
(see Fig. 3). Let γ = inf{s|E∗(s) = Ẽ(s), s ∈ (τ, q)}.
It follows that E∗(γ) = Ẽ(γ), and E∗(s) < Ẽ(s) for all
s ∈ (τ, γ). Therefore, (τ, γ) ⊆ [s0, sf ]\ΓL, and it is true that
E∗(s) > g

w
(s) for all s ∈ (τ, γ). It follows that on (τ, γ),

u∗(s) can only take the values of umin and umax. Since
E∗(s) < Ẽ(s) for all s ∈ (τ, γ), u∗(s) cannot switch from
umin to umax according to Theorem 1, and u∗(s) = umin

for all s ∈ [τ, γ). The trajectories E∗(s) and Ẽ(s) on (τ, γ)
can be computed starting from E∗(γ) = Ẽ(γ) at s = γ
by integrating backwards (4) with u∗(s) = umin and ũ, re-
spectively. Since umin ≤ ũ(s), a straightforward application
of the Comparison Lemma [4] yields that E∗(τ) ≥ Ẽ(τ),
leading to a contradiction. Hence E∗(s) < Ẽ(s) for all
s ∈ (τ, q), and thus u∗(s) = umin for all s ∈ (τ, q)
according to Theorem 1. The last statement implies however
that one can compute E∗(τ) and E∗U (τ) on the interval (τ, q)
starting at s = q with initial conditions E∗(q) = E∗U (q) and
integrating backwards (4) using u∗(s) = umin and u∗U (s),
respectively, for all s ∈ (τ, q). Since u∗U (s) ≥ umin = u∗(s),
an application of the Comparison Lemma as before yields
that E∗(τ) ≥ E∗U (τ), which contradicts the assumption
E∗(τ) < E∗U (τ).

Similarly, if u∗(τ) = umax, one can prove in a similar
manner that E∗(τ) < E∗U (τ) is also impossible. Hence, there
does not exist τ ∈ ΓU such that E∗(τ) < E∗U (τ), and thus
it must be true that E∗(s) = E∗U (s) on ΓU .

The proof of the other statement, namely, E∗(s) = E∗L(s)
for all s ∈ ΓL, is similar, hence, is omitted.

Lemma 3, along with Lemma 1, is used to characterize the
state constrained arcs in the optimal specific kinetic energy
profile E∗(s). Specifically, given the state constraints, one
needs first to compute the optimal solution of a certain re-
laxed problem in order to identify the state constrained arcs.
Subsequently, the solution of the relaxed (non-constrained)
problem can be used to construct the solution of the original
problem with state constraints.

Typically, the relaxation of constraints will affect the
optimal solution. However, as shown by the following
proposition, by choosing carefully where the constraints are
relaxed, the minimum-time and maximum-time solutions do

not change on certain subintervals after the relaxation of
constraints.

Proposition 5: Let Ẽ be defined by P (Ẽ(s), s) = λt
for a certain costate value λt such that ũ ∈ [umin, umax],
where ũ is given by (21). Let ΓU and ΓL as in (28) and
(29), where E∗U (s) and E∗L(s) are the specific kinetic energy
solutions to the minimum-time and maximum-time path-
tracking problems, respectively, with constraints (6). Let
E∗Ur

(s) and E∗Lr
(s) be the specific kinetic energy solutions to

the relaxed minimum-time and maximum-time path-tracking
problems, respectively, with constraints E(s) ≤ gΓU

(s) and
E(s) ≥ g

ΓL
(s) instead of (6). Then E∗U (s) = E∗Ur

(s) for all
s ∈ ΓU , and E∗L(s) = E∗Lr

(s) for all s ∈ ΓL.
Proof: See [10].

F. The Optimal Specific Kinetic Energy Solution

In this section, the optimal solution to Problem 2 is
given by Theorem 2 below. The proof of the theorem takes
advantage of the optimal solution of the relaxed Problem 3
given in the previous section. First, the optimal solution to the
relaxed Problem 3 is characterized with the state constraints
relaxed on some carefully selected subintervals. Then it is
shown that this solution satisfies the state constraints in
Problem 2, hence is also the optimal solution to Problem 2.
The optimal solution to Problem 2 is a combination of the
minimum-time solution, the maximum-time solution, and
energy-saving singular arcs. The detailed proof of this fact
is rather involved, hence, is omitted. The interested reader is
referred to [10] for the proof.

Theorem 2: Suppose there exists a real number λt and a
function Ẽ given by P (Ẽ(s), s) = λt for all s ∈ [s0, sf ],
such that the specific kinetic energy E∗ given by

E∗ (s) =


E∗L (s), s ∈ ΓL,

Ẽ (s), s ∈ [s0, sf ] \ (ΓU ∪ ΓL),
E∗U (s), s ∈ ΓU

(30)

satisfies the desired total tracking time, where ΓU =
{s|E∗U (s) < Ẽ(s), s ∈ [s0, sf ]}, and ΓL = {s|E∗L(s) >
Ẽ(s), s ∈ [s0, sf ]}. Then E∗ is the optimal solution to
Problem 2.

Proof: See [10].
Despite the simple form of the energy-optimal solution in

(30), one is not readily able to choose the correct value of
Ẽ(s) for each s ∈ [s0, sf ] in order to construct the optimal
specific kinetic energy according to (30) because the optimal
costate value λ∗t is unknown.

To identify the correct λ∗t value and the associated singular
arcs for a specific total tracking time, a numerical algorithm
has been introduced in Ref. [10]. This algorithm searches
among a family of extremals for the correct value of λ∗t .
This allows the computation of the associated function Ẽ(s)
from (19) and, subsequently, the optimal solution E∗(s) from
(30). It has been shown in Ref. [10] that such an algorithm
is guaranteed to converge to the optimal solution.

V. NUMERICAL EXAMPLE

We computed energy-optimal speed profiles for a fixed-
wing aircraft tracking a landing path shown in Fig. 3.



A standard point mass aircraft model is used for all cal-
culations [11]. The optimal speed profiles are shown in
Fig. 4, which also illustrates the relation between minimum-
time, maximum-time, and minimum-energy solutions with
different tf . The same problem was solved using a Nonlinear
Programming solver [12]. The comparison of the optimal
speed profiles are shown in Fig. 5. It is clear from these
figures that the results are extremely close to the optimal
ones. Furthermore, the Matlab implementation of the energy-
optimal path-tracking control algorithm found the optimal
solution in 3-6 seconds, while the Nonlinear Programming
solver took at least 5 minutes (and for some cases much
more) to find a converged optimal solution. See Ref. [13]
for more details about this numerical example.
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Fig. 3. 3D Geometric Path.
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VI. CONCLUSION

In this paper, we have studied a speed optimization
problem subject to path-dependent speed and control con-
straints, which is key to the path tracking problems for
many industrial and transportation systems. The optimal
switching structure in the minimum-time and minimum-
energy solutions are analyzed based on optimal control
theory. It is shown that the minimum-energy solution is a
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Fig. 5. Comparison with numerical optimization solver for tf = 1300 s
and tf = 1400 s.

concatenation of the minimum-time solution, the maximum-
time solution, and singular arcs. Based on our analysis, an
efficient algorithm has been proposed for computing the
energy-optimal solution.
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