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Abstract— This paper presents a method for smoothing a One approach for smooth path planning in the presence
path in an environment with obstacles._ Some characte_ristic of obstacles is to use a “channel” or “corridor,” which
nodes of the path are updated in each iteration by solving a s selected a priori, such that it does not intrude any of

quadratic program, which is formulated based on the smooth- . o
ness constraints and the local environment information. Tk € obstacles. A smooth path is then found within the

generated path satisfies the prescribed smoothness consties, ~ channel such that it is collision-free. For instance, [8] in
such as bounds on the curvature, and avoids any collision troduced a method for generating curvature-bounded paths

with obstacles. The proposed method is easy to implement and in rectangular channels; reference [9] proposed a method fo
computationally efficient. constructing bounded curvature paths traversing a constan
|. INTRODUCTION width region in the plane, called corridors, and refererid® [
introduced a method for generating smooth two-dimensional
paths within two-dimensional bounding envelops using B-
spline curves. A nonlinear optimization scheme is used to
esign collision-free and curvature-continuous pathsli.[
In this paper we follow a quadratic optimization approach
r smooth path generation subject to curvature and olestacl

Let r(s) = {(z(s),y(s)) : 0 <s < sy} € R? represent a
parameterized path to be followed by a vehicle, wheig
the arc length coordinate. While obstacles pose constrai
on the image of, vehicle dynamics place constraints on its
higher order derivatives. The challenge with the smooth pat,

tplannln? p“’b:em ![|es in the coordination between these W9earance constraints. The proposed method minimizes the
ypes ot constraints. weighted L, norm of the curvature along the path, which

The most common!y used high order pqth constraint | analogous to the strain energy stored in a deflected
the curvature constraint. AIth_ough the Dubm_s veh|_cle Patd|astic beam. During the optimization process, a sequence
addresses curvature constraints, the result is optimal o f obstacle-free perturbations are generated along thaalor

for a vehlple with constant Speed [1]' For more reaIIStI%irection of the path, which is based on the perturbation
vehicles with acceleration/decceleration capabilityvature technique proposed in [12] for eliminating noise in GPS

has greater influence on both the_ opti_mality and feasitifty easurement data. When combined with other path planning
the path. For example, the traveling time along a longer pa gorithms that provide the initial collision-free pathopr

with small maximum curvature can be shorter than that alor}%type, the proposed method generates collision-freespath
a shorter path with large maximum curvature [2]. BeS|de§Jnder length and local curvature constraints.

a path may be infeasible due to a “minor” violation of the
curvature constraint such that the feasibility can be recey

by a small variation of the path. Hence, smoothing a path Il. CURVE REPRESENTATION ANDVARIATION
via local curvature regulation may lead to an improvement
in terms of feasibility and optimality. Instead of dealing with a curve (path) in the infinite

A discontinuity in the curvature profile implies an instan-dimensional space, we reduce the dimensionality of the
taneous change of the steering wheel angle for a car-liggoblem by considering a finite number of characteristic
vehicle or the bank angle or angle of attack for a fixednodes on the curve, and represent the path using a piecewise
wing aircraft, both of which require (theoretically) infiai Bézier curve passing through those nodes.
control force. Therefore, the curvature of the path should To this end, suppose that the path is defined in parametric
be at least continuous for practical applications. For thiform as r(s) = [z(s),y(s)]", parameterized by its arc
reason clothoid arcs have been used for continuous-cuevatiength s. The curve passes througki characteristic nodes
path planning based on the Dubins’ path prototype [3k,, ry,....,ry € R? at sq,s9,...,5y, respectively, i.e.,
[4], [5]. Reference [6] used analytical splines and heurisr(s;) = r;, i = 1,2,..., N, wheres; = 0 andsy = s;. It
tics for smooth path generation. Reference [7] proposedigrequired that the path must have continuous derivatives a
path planning algorithm which generates a smooth path byast to the second order. Within this context, the smogthin
smoothing out the corners of a linear path prototype usingf the path is equivalent to the deployment of the— 2
Bézier curves based on analytic expressions. Although aharacteristic nodes subject to certain smoothnessiariter
these methods can generate paths with continuous curyature
obstacle avoidance is not guaranteed by these methods per

se, and can only be done in an ad hoc manner. A. Continuous Curvature Path Representation
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riv1,1=2,...,N — 1. Then we have 1. QUADRATIC PROGRAMMING FORMULATION FOR
THE PATH SMOOTHING PROBLEM

Y, = o _1Ti_1 + oyT; + 0y 1T, 1 , i )
@ e R T e @) In this section we formulate the path smoothing problem

/! — . . . . . . . . . . . .
i = Bi—1Tioy + Bivi + Biativa, (2)  as a quadratic program, which approximately minimizes the
- L, norm of the curvature profile, while maintaining the path
/o /o, "o "( .
where, rj = r'(s;) and ri’ = 1"(s;). The coefficients |, and local curvature constraints, boundary conitio
i1, 4 i1, Bi—1, Biy Pi1 are determined by Lagrange - .
.y L , , and collision-avoidance.
interpolation. For a planar smooth curve, the tangent vecto — )
. o : Definition 3.1: The problem
t(s) is the derivative ofr(s) with respect to the arc length,
i.e.,t(s) = r'(s). The normal vector, which is perpendicular min J(z), z€DCR"
to t, can be obtained by(s) = At(s) = Ar/(s), where N
is alinear-quadratic mathematical programming probléaor
A — [ 0 -1 ] . a quadratic programfor short), if J is a linear-quadratic

L0 function, that is,
Sincer”(s) = t'(s), according to the Frénet formut(s) = J(x) — 1 Ty + FT 7
k(s)n(s), where the signed curvatureis given by (@) gt HY e 0
T nxn n H
— T ()" (s) = (Ar/ " 3y WhereH = H' € R™", '€ R", andc € R, andD is a
i(s) =07 (s)r"(s) = (Ar(s),x"(5)) 3 convex polyhedron, namel = {z € R" : Az < b}, where

where (-, -) denotes the standard inner productRif. AeR™™ andb € R™. , , ,

2) Bezier curve interpolation:In order to generate a NOt€ thatD is a convex set. A linear quadratic programming
smooth path, a piecewise Bézier curve is used to interpoldf"0PI€M is & special case of a convex optimization problem
the characteristic nodes. Specifically, between each gair §nen H is a positive semi-definite matrix. Both can be
adjacent characteristic nodes, a Bézier interpolatingecu SCIved very efficiently using numerical methods.
is constructed to match the previously introduced first and . .
second path derivative approximations. To this end, thi fift"- Quadratic Cost Function
order Bézier curve is a natural choice. The reader may The weightedL, norm of the signed curvature function
refer to [13] for more details about Bézier curves. Thef the perturbed path is defined by
overall path, as the concatenation of Bézier curves batwee

those neighboring nodes, provides continuous curvature by A sf ~2 2

construction. 7]z = / w(s)R(s)ds | (8)
S0

B. Path Variation wherew(s) is a positive definite weighting function. Next,

we propose an appropriate discretization of this cost fanct
Let K be the vector of the signed curvature of the original
path evaluated at the characteristic nodes, ke [x(s1),
k(s2),...,k(sn)]T and, similarly, letK be the vector of
N the curvature of the perturbed path evaluated at the same
£(s) =1(s) +d(s)n(s), () nodes. We can then write equation (6) for all characteristic
- o . des in a matrix form a¥l ~ K + CX, where X =
whered(s) is the variation functions € [0, s]. no T . ' o
The signed curvature of the perturbed cuiveat each [0, ---, dn]", and C is a full-rank N x N matrix with
characteristic node foi = 2,3,...,N — 1 is given by Its entries Qetermlned by equation (6) except fap af‘?'
equation (5), which is a quadratic function in terms of the‘™.N -1 which are CO”_‘p“ted from the boundary °°'ﬁd'“°”3'
perturbations’; 1, &; and s, at three neighboring nodes I.e., the tangent directions at the start and end point of the
The curvature at the first and last nodes are determined B IEh.t Wb di | i ith tive di |
the boundary conditions, which are discussed later in thisI c ‘ € a diagona mr? rtlr)1( tWI positive -diagona
paper. Assuming that the variation is small enough, thel loc e2men i\;"lzlfr‘]’?’ i wgvt SUCI . 38“” b w(si), @ = ed
curvatures; of the perturbed path at thé" characteristic 2% "> .th etn € 'F‘deflral in ( 2‘ ian .e approximate
node can be approximated, by neglecting the quadratic terdfgNY, Say, the trapezoidal rule, as Tollows.
in equation (5), as follows: sf 1
/ w(s)i?(s)ds ~ k2w (59 — 51) +
Ri ~ <AI‘/i,I‘”i> 2

Consider a specific variation of the paitfis) along its
“normal direction’n(s) only, i.e., the perturbed paiH(s) is
given by

(=)

+((AY;, B —ini1) + (v, 0 —1An;_1))0;—1 1= . 1.

0t (2 oA, © g o Al = sia) + gk sy = swor)

+ ((Ar';, Biinipr) + (i, 0 1An 1)) 8ia =2 B .

= Ki + Xi—1,i0%—1 + Xi0i + Xi+1,i0i+1, = K"WAK ~ (K+CX) WA (K +CX),
wherey;_1,;, x; andx;41,; are constants introduced for thewhere A; = %diag([sz — 81,83 — 81,84 — 82,...,SN_1 —

convenience of notation. SN-3,8N — SN—2,8N — Sn—1]). In order to regulate the



i = (AT, F)) = (0 _1AFi—1 + 0 AF; + 0 1AT 41, Bi,—1Ti—1 + BiTi + BiaTig1)
= (o, 1Ari_1 + o Ar; + a1 Aripy + oy 1 Ang 161 + 0 Angd; + o 1 Ang 164,
Bi,—1Ti—1 + Biti + Biitit1 + Bi,—1ni—10;—1 + Binid; + Biainip16i41)
= <AI‘; +ai1An;, 10,1 + a;An;0; + a; 1An; 110,41, I“;/ + Bi,—1ni—10;—1 + Bin0; + ﬁi,lni+15i+1> (5)
= (Ar}, vy + (Ar}, B; —1n;_16;—1 + Bin;; + Bi1ni410i41)
+ (v a; —1An;_10;_1 + ;An;0; + a; 1An;116;41)
+ (ovi,—1An;_10;—1 + a;An;0; + ;1 An; 10,41, Bi—1mi—16,—1 + Bin6; + Biini16i41)

curvature profile, we therefore use the following cost funcThe summation of allD;’s over all line segments approxi-
tion, which approximates the square of the norm of the mates the change of the total length of the curve owing to

curvature: the variationX.
T In order to write equation (12) in a more compact form, let
J(X) = (K +0X)" WA, (K +CX). ©) B = diag([1/|r2 —11,....1/[rx —rx—1]]). and define
It is easily seen thaf is a convex linear-quadratic function the matrixG' as in (11). Also, letly, denote theN — 1
because the matri€TWA,C is positive definite. dimensional column vector with all elements equal to one.
Let A, (X) denote the change of the total length of the path
B. Path Length Constraint induced by the variatiotX. ThenA can be approximated

Because the length of the path affects the traveling tim@Y Az (X) ~ 1% _; BGX, which is a linear function ofX’.
it is desirable to have a constraint on the total length of th&he constraint on the total length of the path is given by the
path. When a path is perturbed at each node along the norrf@jlowing linear inequality constraint o
direction, thg total Iepgth _of the path is not necessarily Lusin — L < AL(X) < Linax — L, (13)
preserved—it could either increase or decrease depending
on the perturbation scenario. Therefore, it is necessary where L is the length of the path before perturbation, and
characterize the relationship between the perturbatiah ar.,.x and L,;, are the upper and lower bounds of the path
the change of the total length of the curve, and implememgngth, respectively. These inequalities are enforcetheh-
certain bounds on the latter. wise. Alternatively, if the length of the path is fixed, théret
When the spacing between adjacent characteristic nodé@wear equality constrainf\;(X) = 0 is applied Cmin =
is small enough, the total length of the curve can be approX- = Lyax):
imated by the total length of the line segments connecting .
each pair of the adjacent nodes. Lt denote the change ©: Curvature Constraints
of the length of the line segment between noaesand Local curvature constraints are important for practical
r;41 induced by the perturbatiof. The new positions of path planning. For example, a ground vehicle requires a
the nodes after the perturbation are givenrpy= r; + d;n; larger turning radius when moving on a slippery surface
andr; 1 =r;11 +8;+1n,41. Then| ;.1 — ;|| is the length compared with the same operation on normal ground. Let
of the corresponding line segment of the perturbed path. Wémax,; and K, ; be the maximum and minimum curvature
assume that the variatiods andd;,; are small enough and constraints allowed in a neighborhoodf(i = 1,2,..., N)
8iy 0ir1 < |lriz1 — ri]|. The length of the line segment of which are determined by the vehicle dynamics and the local

the perturbed path between nodgsand s;; is environment. LetKyax = [Kmax, 1, Kmax,2, - - - » Kmax,n] T
~ ~ and Kumin = [Kmin, 1, Kmin 2, - - -, Kmin,n]T. The curvature
[Fit1 — il = [[rig1 + divamips — 1 — Simy| of the perturbed path then need to satisfy the linear inégual

constraintK ,;, — K < CX < Kpax — K.

= \/||(rz'+1 — ;) + (G — 6my)| % o N .
By the polarization identity for the Euclidean inner proguc D. BOUITIdS on th? Va_r|at|o_n and C0||ISIO!‘1 Avoidance )
Certain approximations in the formulation of the quadratic

141 — il =(Ilrizr — vil]* + [ 0is1mip1 — im ) programming problem impose limits on the allowable mag-

2 (B amyet — Oy, — 1) )é nitude of variation: because the second order terms in

R T T ST Birl R ) equation (5) are neglected during the approximation of the

Then the segment length; can be written as in (10). curvature, it is required that the variation is small enough
By the small variation assumption, and dropping the squa{:‘elch that this approximation is valid. The small variatien i

terms, expression (10) yields the following approximatiorlso required by the approximation used in the path length

for D; constraint. On the other hand, the magnitude of the variatio
is also limited by the requirement of collision-avoidance,

D; ~ <M,5i+1ni+1> _ <M,§ini> ~ since a large variation of the path in a neighborhood of an
[riss — x| [rit1 — il obstacle may lead to a collision. In order to determine the

12)  pounds of the perturbation at th¢ node(i = 2,3,..., N —



Di = [|tip1 — Til| — [|rips — xill

= —[lrips — il + \/||I‘i+1 —ri|® + |0iami41 — G |® + 2 (Gipanign — iy, Ty — 1)

_ 1 85 1mi1 = &img||® + 2 (Sip1misr — Gimy, Tigq — 1) (10)
||ri+1 - r’LH 14 14 ||5Z-+1n1-+1 — 512111H 2 49 <5Z—+1ni+1 — 51-n1-’ rir1 —r; >
[riy1 — il [ritr —rill 7 [lripn — |
—(ro—ry,ng) (ro—ri,ny) 0
—(r3 —rz,ny) (rz—ro,ng)
G = . . . (1)
0 —(ry —ry_1,nNy-1) (*N —Ty_1,0nN)

1), we consider the path segment betweenithel'™™ and E. Initial and Final Condition

i nodes, and the segment between itfeand i + 1™ If no constraint exists on the tangent direction of the path
nodes, respectively. For the former segment, initiallyGs® 5 1o start and target points, then the constraints at those
0; = di-1 = dmax, Wheredmax is a predetermined small 4 noints are similar to hinge joints, i.e., the displaceme
positive number. If this segment is still collision-freeteaf 5, or 6x_, does not alter the path curvature at nader N

the_ variatio_n, then let, ; = z_Smax, otherwise decreasg _ hencexis = yn_1n = 0. On the contrary, if the tangént
while keepingd; = ;1 until the perturbed segment is giraction of the path is fixed at the boundary with heading

collision-free, and letY, ; = ¢;. Similarly, the variation anglesy, ¥ € R, then the tangent vectors at those two
lower boundY;; of the same segment is determined b%oints aré

initially choosingY;; = —0max = d;i—1 = 6. If collision

occurs, we gradually increasg while keepingd;,_1 = ¢; t1 = [cospy, siny], ty = [costn, siny],

until the perturbed path is collision-free, and Mt; = J,. )

In this way, we also find the variation lower and uppe@nd the corresponding normal vectors are = At; and
bounds of the path segment between tHeandi + 1 ny = Aty, respectively. This is analogous to the fixed end
nodes, which are given bg;; and Z,, ;, respectively. De- constraint for a beam. The tangent directional constraints

fine Xmax,i = min{Yu,iaZu,i}n Xmin,i - max{}/l,iyzl,i}n 52 and&N_l are

Xmax = [Xmax,laXmax,Za ceey Xmax,N]T and Xmin = 5 -0
[Xmin. 1, Xmin2, - - - » Xmin,n|T. Note that because the path (02m2 + 12 —11,m1) =0,
is required to pass through the start and target positities, t (dN—1nN-—1+TN-1 —TN,nN) =0,

variation o must be zero at these two points, which can be, . . .
achieved by setting the bounds A&, 1 — Xmax1 — 0 which uniquely determine the values &f andd .

Xooonv = X ~ 0. Then the perturbed path would be In order to compute the curvature of the path at the start
corﬁi;i]c\)]n-_freem;);]\io;g as the variatiok satisfies X, < and end points when the tangent directions are fixed, we

X < X,.... Collision is checked at each node and a certathrOduce two extra points using finite differences as foio

number of interpolating points in each segment of patH;P =11 — (52 = 1)ty ANAryyg = ry + (S8 — sn—1) tw.

as shown in Fig. 1. Because collisions are not checked'€MX1.2 andyy v can be computed using equation (6).
everywhere along the path, it is possible that the perturbq_q Connection to Beam Theory

path slightly intrudes some obstacle, but this can be adoide

by slightly expanding the boundary of the obstacles when Co_nsider a classical beam subject to pure bending. The
performing the collision checking. bending moment and the local curvature satisfy:

M (s)
EI(s)’

wherex(s) is the local curvature of the neutral surface of the
beam,M (s) is the bending moment at the cross section, at
and(s) is the second moment of area of the cross section
about its neutral surface, and is the Young’s modulus of
the beam material. The produét/ is often referred to as
the flexural rigidity or the bending stiffnessf the beam.

The total strain energy/ of the bending beam can be
Fig. 1. Bounds of variation. written as:

_ [T ME(s) 1 2
_/0 2EI(S)dS_ 5/0 EI(s)k"(s)ds,

Kk(s) =




which is exactly the square of the weightéd norm of wherecy,co, 51,582 > 0. It is seen that the left and right
the curvature function. Hence, the result of the quadratitand sides in the above inequalities initially provide xeld
program essentially corresponds to a minimum bendingurvature bounds whep = 0, yet approach the prescribed
energy configuration in a neighborhood of the original pattbounds K.,;;, and K, asymptotically asj increases. A
It is also observed that the weight functian(s) in (8) similar technique is applied for the enforcement of the
corresponds to the flexural rigidit} I (s). tangent directional constraints at the start and end points
Specifically, if the initial and final tangent directionalreo

IV. PATH SMOOTHING ALGORITHM straint can not be satisfied in one iteration, then the fdhow
A. Discrete Evolution and the Path Smoothing Algorithm constraints are used:

Consider a family of smooth pathB(s, j), wheres is | (Sama + 12 —1r1,11) | < cze P87,
the path coordinate parameterizing the path ang the
index parameterizing the family. The path evolves among
the family P(s, j) at the representative nodes according t@uith cs, c4, 33, 84 > 0.
the evolution equation

| (Sn_1ny_1+Tn_1 —ry,ny)| < cre P,

V. NUMERICAL EXAMPLES
P(si;j+1) = Plsi,j)+Xim(si,j),  (14) A Fixed Length Path Smoothing with Collision Avoidance
0 . . . . .
P(s,0) = PO(s), We consider an example in which a UAV flies from point

where X7 is the i" component of the solution to the A 0 point B. The obstacles are represented by the gray
quadratic program with initial pattP(s,j). For eachj, f€9lons in Fig. 2. T_he_ original path is generated using the
the path is given by the piecewise fifth order Bézier curvfx algorithm fqr minimum I(_en_gt_h_ and smoothed using a
interpolation between the characteristic nodes as destribCUrth order spline curve. This initial path is shown in blue

in Section II-A. in Fig. 2. The initial and final tangents of the path are fixed.
The proposed path smoothing algorithm is designed basdfi€ length of the path is T'Xed dur_lng th_e_path _smoothmg
on the evolution equation (14): process. The path smoothing algorithm finishes in 0.39 sec

after 15 iterations. The curvature profiles for the original
and smoothed paths are compared in Fig. 3. Thenorm

of the curvature function with respect to the path coorainat
decreased by3% after smoothing, while thé ., norm was
educed by70%. In Fig. 4, the optimal speed profiles of
he original and smoothed paths are compared. It is clear
Shat the smoothed path provides a shorter travel time. The
timal speed profiles are computed using the time-optimal
rameterization method introduced in [15] with free final

1) Letj be the count of iterations, starting frojn= 1,

2) Discretize the path witV nodes, says, = 0, s2, s3,
<oy, SN = Sf.

3) Determine the bounds of variation, and solve th
guadratic programming problem. Interpolate the resu
with a piecewise fifth order Bézier curve to generat
the new path,

4) Compute the difference between the new and the O@E

path by speed at point B.
Sf
&= [ 1PGi) ~ Plsd — 1) s

0 5
Stop the iteration if; is smaller than some predeter- ar obstacle y
mined threshold, or if reaches the maximum number al
of iterations. Otherwise increageby one and go to ol
Step 2).

obstacle

B. Reconciling Conflicts Between Variation Bounds and

obstacle

y (km)

Constraints >t
Due to the bounds on the allowed variation, the domain 2 A
of optimization in each step of the proposed algorithm is -3}

relatively small, and sometimes the variation bounds are in
conflict with the boundary conditions and curvature con- ‘
straints, in the sense that the prescribed boundary condliti & 0 5
and curvature constraints cannot be satisfied by any vamiati @ (lm)
within the bounds during a single iteration.

To resolve such conflicts, the curvature constraints and
the boundary conditions are enforced progressively during
the iterations when necessary, rather than being enforc
explicitly in each iteration. For example, suppose the pat

Fig. 2. Path smoothing in the presence of obstacles.

d path Smoothing with Localized Curvature Bounds

needs to satisfy the curvature constraiés,, < K < In this example, a ground vehicle starts from point A at
Kmax. Then for each iterationj, the following_relaxEd one side of a frozen river, avoids the obstacle, crosses the
curvature bounds are used ' river while passing through point B, and finally reaches the

_ _ target at point C at the other side of the river. Due to the
Koin — c1e P19 < K; < Kpax + coe P27 small coefficient of friction of the icy river surface, it is



st e , can also be accommodated. The proposed path smoothing
T Lo Smoothedpath )4 algorithm has been applied to several examples, and its
] efficiency and effectiveness have been validated. Futurk wo
will focus on extending the current path smoothing method
] to the three-dimensional space.
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Fig. 5. Smoothed path with local curvature constraint.

VI. CONCLUSIONS

In this paper, we considered the problem of two dimen-
sional path smoothing with obstacles and local curvatune co
straints. The problem is formulated as a quadratic program,
which minimizes the weighted.s norm of the curvature
along the path. By incorporating additional linear conatsa
into the quadratic programming problem, extra constraints
on the tangent of the path, path length, and local curvature



