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Abstract— We propose a decentralized control law for multi-
agent formations in two dimensions that allows the participating
vehicles to display intricate periodic and quasi-periodic geo-
metric patterns. Inspired by the “standard” consensus protocol
ẋ=−Lx, these controls rely only on the relative position between
the networked agents which are neighbors in the underlying
communication graph. Several examples are presented, result-
ing in non-trivial geometric patterns described by trochoidal
curves, similar to those generated by kids around the world
using a spirograph. These paths can be useful for coordinated,
distributed surveillance and monitoring applications, as well as
for the sake of their own aesthetical beauty.

I. AN EXTENDED CONSENSUS PROTOCOL

Consensus problems have been extensively used in the
past in the area of distributed computing and management
science. Their recent popularity in the controls community
stems from their utilization in formulating and solving a
variety of multi-agent, mobile network problems [1], [2].
In this paper we propose a generalization of the standard
consensus algorithm used widely in the literature [3], [4],
[5], and we show how it can be utilized to generate intricate
geometrical patterns for the ensuing agent paths. Using
minimal assumptions, the proposed feedback control is able
to generate geometric patterns for the agent trajectories that
go beyond formation-type geometric models, which deal
mainly with identical agents in cycle pursuit [6], [7], [8],
[9].

Our inspiration comes from gyroscopic control strategies
used in the wheeled robotics community [10] for obstacle
avoidance. Since the proposed control law introduces cir-
culation, it cannot be derived from a scalar potential, and
hence it does not belong to the family of consensus control
laws that are gradient-based. As an added benefit of the
proposed extension, it is shown that this control law results
in consensus points that lie outside the convex hull of the
initial positions of the agents. This may be useful for obstacle
avoidance and/or consensus with deception, for instance.

In the second part of the paper we particularize the
proposed control law to the case of periodic and quasi-
periodic pattern generation and show how it can be used
to generate elaborate, aesthetically beautiful patterns, similar
to those obtained using a spirograph.
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II. MOTIVATING EXAMPLE

In order to demonstrate the main idea, we start with the
simplest of cases, namely, two agents (N = 2) in the plane.
The extension to the case of an arbitrary number of agents
follows readily from this case and it is given in the next
section, along with the stability analysis of the closed-loop
system. To this end, assume a given global coordinate frame
E with origin O and two agents at locations ~r1 and ~r2
respectively. The kinematic equation for each agent is given
by

~̇ri =~ui, i = 1,2. (1)

We assume that only the relative distance ~r12 =~r1−~r2 is
known to agent no. 1 and, similarly, the relative distance
~r21 = −~r12 is available to agent no. 2. It can be easily
shown [5] that the control law

~u1 =−γ1~r12, ~u2 =−γ2~r21, γ1 + γ2 > 0 (2)

achieves consensus. Furthermore, with this control law, the
two agents will meet somewhere along the line segment
initially connecting ~r1(0) and ~r2(0). Our first objective is
to modify (2) in order to allow convergence of the agents
to points that do not necessarily belong to the line segment
(in general, the convex hull) defined by the initial position
vectors.

The main observation here is that the control law (2) does
not make use of all available geometric information to each
agent. For instance, agent no. 1 knows not only the vector~r12
but also all vectors (directions) perpendicular to ~r12, which
can then be used in a feedback strategy. Similarly for agent
no. 2. This additional information in the control law, inferred
from–but distinct than–the relative position vector between
the agents, can lead to more flexibility for trajectory design.
To this end, let~q12 and~q21 be such that~q12 ·~r12 =~q21 ·~r21 = 0,
and assume the following control laws1

~u1 =−γ1~r12 +β1~q12, ~u2 =−γ2~r21 +β2~q21 (3)

Later it is shown that this control law also achieves consensus
for γ1 + γ2 > 0 and β1,β2 ∈ R.

In preparation for the general case, let us now introduce
coordinates, with respect to a global frame E , leading to
[~ri]E

4
= xi ∈R2, (i = 1,2) and [~r12]E = [~r1]E − [~r2]E = x1−x2.

Let the error vector z ∈ R2 of the relative distance between
the two agents be

z
4
= x1− x2 = d11x1 +d21x2 = (DT⊗ I2)x, (4)

1Owing to the freedom in choosing ~q12 and ~q21, we define a “position
orientation” such that ~r12×~q12 =~r21×~q21.



where D =
[
1 −1

]T and where x = [xT
1, xT

2]
T ∈ R4. Further-

more, let [~q12]E
4
= p = Sz where S is the skew symmetric

matrix

S =

[
0 −1
1 0

]
. (5)

It is clear that pTz = zT p = 0. It can then be easily seen that
the control law (3) can be written compactly, as follows

u =−(Γ⊗ I2)(D⊗ I2)z+(B⊗ I2)(D⊗ I2)Sz
=−(ΓD⊗ I2)z+(BD⊗S)z, (6)

where u = [uT
1, uT

2]
T ∈ R4 and Γ = diag(γ1,γ2) and B =

diag(β1,β2). From (4) it follows that the error equation is
given by

ż = (DT⊗ I2)ẋ = (DT⊗ I2)u
=−(DT⊗ I2)(Γ⊗ I2)(D⊗ I2)z+(DT⊗ I2)(B⊗ I2)(D⊗ I2)Sz

=−
(
(DT

ΓD)⊗ I2
)
z+
(
(DTBD)⊗S

)
z.

Stability is determined by the eigenvalues of the matrix
ACL =−((DTΓD)⊗ I2)+((DTBD)⊗S). A simple calculation
shows that spec(ACL) = {−(γ1 + γ2)± i(β1 + β2)}. Hence
consensus is achieved asymptotically as long as γ1 + γ2 >
0. The “classical” consensus control law (2) corresponds
to the case when β1 = β2 = 0. When B 6= 0 stability is
still maintained, however, the transient response is differ-
ent. Furthermore, the point where consensus is achieved
can be selected to lie outside the line segment connecting
x1(0) and x2(0) by a proper choice of the gains β1 and
β2. This is demonstrated in Fig. 1 where the result of a
simulation with the data x1(0)= (−1,1)T,x2(0)= (2,3)T,Γ=
diag(0.1,1),B= diag(−0.5,2) is shown. For this example the
two agents meet at the point with coordinates (−2,1).
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Fig. 1. Numerical example with “skew-symmetric” feedback. The skew-
symmetric term creates a vector field with circulation.

III. EXTENSION TO N AGENTS IN THE PLANE

For the general case, consider N agents in the plane.
Assume that their location is given by the state variables
xi ∈ R2 for i = 1, . . . ,N, expressed in the same, common
global frame E , satisfying the differential equations

ẋi = ui, i = 1, . . . ,N. (7)

To the N agents we associate a graph G that describes
the communication topology between the agents. That is, G
has N nodes and M edges (links), with each edge denoting
knowledge of the relative position between the corresponding
agents. We can define the incidence matrix D ∈ RN×M with
elements as follows [11]. We assign di j =+1 (−1) if the ith
node is the head (tail) of jth edge, and di j = 0 otherwise.
If the ith agent is a neighbor with the jth agent, then they
are connected by an edge, and we have the difference (error)
variable

zk =
N

∑
`=1

d`kx` =

{
xi− x j, if i is the head,
x j− xi, if j is the head,

(8)

where zk ∈ R2 for k = 1, . . . ,M. If the columns of D are
linearly independent, that is, if the graph does not contain
cycles, then the vectors zk are linearly independent [11]. Note
also that the graph is connected if and only if rankD = N−
1 [3], [12]. Introducing the stack vector x=

[
xT

1 · · · xT
N
]T ∈

R2N , the state equations (7) can be written compactly as

ẋ = u, (9)

where u=
[
uT

1 · · · uT
N
]T ∈R2N . Following (6), we propose

the control law

u =−(ΓD⊗ I2)z+(BD⊗S)z, (10)

where z =
[
zT

1 · · · zT
M
]T ∈ R2M , and where Γ =

diag(γ1, . . . ,γN) and B = diag(β1, . . . ,βN). The standard con-
sensus algorithm results as a special case of (10) where
B = 0.

Convergence Analysis
From (8) it can be easily shown that the error vector z can

be written compactly as follows

z = (DT⊗ I2)x. (11)

From (10) the differential equation for x is then given by

ẋ =−(ΓD⊗ I2)(DT⊗ I2)x+(BD⊗S)(DT⊗ I2)x

=−
(
(ΓDDT)⊗ I2− (BDDT)⊗S

)
x

=−
(
(ΓL)⊗ I2− (BL)⊗S

)
x, (12)

where L
4
=DDT ∈RN×N is the graph Laplacian [5]. Let 1N

4
=

(1,1, . . . ,1)T ∈ RN denote the N-dimensional column vector
of ones, and recall that L1N = 0 [5], [12]. For any ν ∈ R2

we have that
(
(ΓL)⊗ I2−(BL)⊗S

)
(1N⊗ν) = (ΓL1N)⊗ν−

(BL1N)⊗ (Sν) = 0. It follows that the vector 1N ⊗ν spans
the null space of the matrix in (12). The equilibrium point
x̄∞ of the linear differential equation (12) therefore satisfies
the condition x̄∞

4
= limt→∞ x(t) = 1N⊗x∞ for some x∞ ∈R2,

from which it follows that limt→∞ x1(t) = limt→∞ x2(t) =
· · ·= limt→∞ xN(t) = x∞, thus achieving consensus.

Let the coordinates of the final consensus point be x∞ =
[x∞ y∞]

T ∈ R2. We have the following proposition.
Proposition 1 ([13]): Let v1,v2 ∈ R2N be such that

span{v1,v2} = R⊥
(
(ΓL)⊗ I2 − (BL)⊗ S

)
. The final ren-

dezvous point is given by

x∞ =

[
x∞

y∞

]
=

[
vT

1(1N⊗ I2)
vT

2(1N⊗ I2)

]−1 [vT
1x(0)

vT
2x(0)

]
. (13)



IV. PERIODIC AND QUASI-PERIODIC TRAJECTORIES

Given an interconnection topology, the particular choices
of the gain matrices Γ and B can be used to generate specific
trajectory patterns for the agent paths. Since we are mainly
interested in periodic or quasi-periodic trajectories, next we
restrict the discussion to the case Γ = 0. By letting Γ = 0 in
(12) the closed-loop system reduces to

ẋ = ((BL)⊗S)x. (14)

The shape and frequencies of the resulting paths/trajectories
are therefore determined by the eigenvalues and eigenvectors
of the matrix (BL)⊗ S. Recall from the properties of the
Kronecker product that the eigenvalues of the matrix (BL)⊗S
are of the form λ µ where λ ∈ spec(BL) and µ ∈ specS.
Additionally, the corresponding eigenvectors are of the form
v⊗u where v∈C3 is the eigenvector of the matrix BL associ-
ated with λ and u∈C2 is the eigenvector of the matrix S as-
sociated with µ . Since det(λ IN−BL) = det(λ IN−BDDT) =
det(λ IM −DTBD) it follows that the nonzero eigenvalues
of the matrix BL coincide with the nonzero eigenvalues of
DTBD. Because the latter matrix is symmetric, all eigenvalues
of BL are real. Consequently, all eigenvalues of (BL)⊗S lie
on the imaginary axis. It follows that the solutions of (14)
consist, in general, of a superposition of sine and cosine
functions, perhaps multiplied by polynomials in t (in the case
of multiple eigenvalues).

Let BL = V JV−1 be the spectral decomposition of the
matrix BL. It can be easily shown that

e((BL)⊗S)t = (V ⊗ I2)e(J⊗S)t (V−1⊗ I2). (15)

The spectral decomposition of the matrix BL thus provides all
information needed to investigate the nature of the solutions
of (14). In fact, additional information can be gathered owing
to the special structure of the state matrix in (14).

Lemma 1: Let A be an n× n square matrix and let S be
the 2×2 skew symmetric matrix given in (5). Then

eA⊗S = cosA⊗ I2 + sinA⊗S. (16)
Proof: Notice that S2k = (−1)kI2 and S2k+1 = (−1)kS,

k = 0,1,2, . . . and recall that

eA⊗S =
∞

∑
k=0

1
k!
(
A⊗S

)k
.

The rhs of the previous equation can be expanded as follows
∞

∑
k=0

1
(2k)!

(
A⊗S

)2k
+

∞

∑
k=0

1
(2k+1)!

(
A⊗S

)2k+1

=
∞

∑
k=0

1
(2k)!

(
A2k⊗S2k)+ ∞

∑
k=0

1
(2k+1)!

(
A2k+1⊗S2k+1)

=
( ∞

∑
k=0

(−1)k

(2k)!
A2k)⊗ I2 +

( ∞

∑
k=0

(−1)k

(2k+1)!
A2k+1)⊗S.

Making use of the fact that for a square matrix A,

cosA =
∞

∑
k=0

(−1)k

(2k)!
A2k, sinA =

∞

∑
k=0

(−1)k

(2k+1)!
A2k+1,

the result of the lemma follows immediately.

We therefore have the following Proposition.
Proposition 2: The solution of (14) is given by

x(t) =
(

cos(BLt)⊗ I2 + sin(BLt)⊗S
)
x(0), (17)

= (V ⊗ I2)
(

cos(Jt)⊗ I2 + sin(Jt)⊗S
)
(V−1⊗ I2)x(0),

for all t ≥ 0 and all x(0) ∈ R2N .
The structure of the state matrix in (14) (e.g., its eigen-

values and eigenvectors) thus can provide a great deal of
information regarding the paths followed by the agents in the
Cartesian coordinate frame, as well as the relative location
of the agents on these paths (i.e., their relative phasing). For
instance, one can ensure that the agent trajectories either
form closed paths with given phasing, or they form a dense
set of trajectories, ensuring that almost every point in a given
region will be visited at least once by one or more agents.

V. ORBIT PATTERN GENERATION

A. A Family of Achievable Paths
The solutions in (17) fall in the general class of trochoidal

curves, which includes ellipses (and circles), epitrochoids,
hypotrochoids, as well as cardioids, astroids, limaçons, and
all polar coordinate roses [14]. An epitrochoid curve is
generated by a point P attached at a radial distance d from
the center of a circle of radius r, which is rolling without
slipping around a circular track of radius R. The distance
d can be smaller, equal, or greater than the radius r of the
rolling circle. The ratio of the circular two tracks k = R/r
indicates the number of points at which the agent is closest
to the center of the circular track. These are referred to as
crests. In the special case when r = d, the curve becomes
an epicycloid with k cusps; at these points, the curve is not
differentiable. Note that ellipsoidal paths correspond to the
case when k = 0. A hypotrochoid is generated by a point P
attached at a distance d from the center of a circle of radius
r, which rolls inside a circle of radius R. Again, the distance
d can be smaller, equal, or greater than the radius r of the
rolling circle; this radius, however, cannot exceed that of the
circle R.

B. Illustrative Example: Three Agents
In this section we investigate in greater detail the simple

non-trivial case, namely, three agents in the plane (N = 3),
connected either in a path graph (M = 2) or a complete graph
(M = 3). For a path graph interconnection the incidence
matrix is given by

D =

−1 0
1 −1
0 1

 . (18)

A straightforward calculation shows that the two nonzero
eigenvalues of the matrix BL for this case are given by

β1

2
+β2 +

β3

2
±

√
β 2

1 −2β1β3 +4β 2
2 +β 2

3

2
.

For the complete graph the incidence matrix is given by

D =

−1 0 1
1 −1 0
0 1 −1

 . (19)



The nonzero eigenvalues of the matrix BL for this case are
given by

β1 +β2 +β3±
√

β 2
1 +β 2

2 +β 2
3 −β1β2−β2β3−β3β1.

The ratio of the two nonzero eigenvalues is equal to k+1 for
an epitrochoid or k−1 for a hypotrochoid. Note that if k turns
out to be an irrational number, then the number of crests is
infinite, which means that the curve does not close; instead,
the trajectories form a dense subset of the space [15]. An
orbit redesign can yield periodic orbits of a particular shape
that can be used for coordinated, distributed surveillance and
perimeter monitoring applications; see, for instance, Fig. 2.
Such an orbit redesign will require however, in general, a
complete interconnection topology [13].

x

y

Fig. 2. Three agents patrolling a pentagon.

An interesting case occurs when the closed loop system
has two zero eigenvalues at the origin. In this case the
trajectories exhibit secular motion. Figure 3(a) shows the
trajectories when B = diag(0.5,−1,−1). It can be easily
verified that in this case the relative orbits for the three agents
are all circles; see Fig. 3(b).
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Fig. 3. B = diag(0.5,−1,−1) and initial conditions x1(0) = (6,8),x2(0) =
(−7,5),x3(0) = (5,−10) (path graph interconnection). The figure on the
right shows the relative orbits.

VI. A GALLERY OF ORBITS

Clearly, one can generate a myriad of beautiful geometric
patterns by changing the gain matrix B and by choosing a

suitable graph Laplacian L in (14). Figures 4-7 provide a
glimpse on the plethora and variety of geometric patterns
generated using the consensus control law in (14) for the case
of three and four agents. We urge the reader to try his/her
own skills at generating visually pleasing curves using (14).

VII. CONCLUSIONS

We have presented an extension of the classical consensus
algorithm for multi-agent systems to achieve consensus out-
side the convex hull of the initial conditions of the agents. As
a by-product of this idea, we have shown how to generate
agent trajectories leading to intricate geometric patterns in
the plane using only relative, local information. Future work
will concentrate on developing a general theory for orbit
design for an arbitrary number of agents in two, and three
dimensions. Apart from their inherent aesthetical appeal,
these orbits can have immediate applications in the area of
coordinated, persistent surveillance and monitoring using a
team of agents interacting using local information.
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(f) B = diag(0,1,−6.5933).
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(l) B = diag(1−1−0.5).

Fig. 4. A menagerie of orbits with three agents using the extended
consensus protocol; path graph.
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Fig. 5. A menagerie of orbits with three agents using the extended
consensus protocol; complete graph.
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Fig. 6. Sample orbits with four agents using the extended consensus
protocol; path graph.
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Fig. 7. Sample orbits with four agents using the extended consensus
protocol; complete graph.


