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Abstract— The hierarchical decomposition of motion plan- finite sequence of cells leading from the initial point to the
ning tasks into geometric path planning, followed by kin- destination. The task of the lower level planner is then to
odynamic motion planning is useful for designing efficient compute a trajectory that lies completely within this cheinn

algorithms, but it entails the possibility of inconsisteny between . . . .
the two layers of planning. In an earlier paper, we proposed a Apart from the obvious lack of optimality, such a hierar-

general framework, based on rectangular cell decompositics, ~ Chical approach to the motion planning problem may lead to
for incorporating information about the kinodynamic behavior ~ kinodynamically infeasible paths, since the geometridpat

of the vehicle in t_he geometric plannin_g layer itself. !n ths planner has no prior knowledge of the kinodynamic con-
paper, we use this framework to design a geometric path gyqints of the vehicle. Therefore, a fundamental requérem

planning scheme whichsimultaneously finds an obstacle-free . . . . . .
channel of cells from the initial point to the goal, as well asa of hierarchical motion planning algorithms is a guarantee

vehicle state trajectory lying within that channel. of “compatibility” between the two levels of planning, i.e.
a guarantee that the geometric path planning layer never
[. INTRODUCTION produces a path that may be infeasible for the vehicle to

The tasks of motion planning and control rank amondP!low. To provide such a guarantee, it is necessary to
the indispensable requirements for achieving autonomy féfaracterize the kinodynamic feasibility of traversal ols
mobile vehicles. Surveys of path planning and motion plarhannels of cells. To provide such a guarantee, it is negessa
ning algorithms for mobile vehicles are available in [1]-[3 0 incorporate some information about the characteristfcs
Fundamentally, the motion planning problem — namely, tha{gamb_le trajectories of the_ vehlcle_ in the geometric path
of finding an obstacle-free trajectory from a given initialPlanning layer itself. To this end, in [10] we proposed a
point to a given destination in the environment — is a singlfamework for path planning based on cell decompositions,
optimization problem, but due to the lack of numericaIIyWh'Ch uses such information as a transition cost function
efficient algorithms for its real-time solution, it is uslyal ©ON an appropriately constructed graph. A key ingredient of
decomposed and solved over two layers of hierarchy. THBE approach in [10] was the availability of a consistent
higher — and more abstract — layer is the geometric pafR@nner for ranking “good” and “bad” sequences of cells.
planning layer, which is concerned with obstacle avoidancd? [11], we have proposed such an algorithm that ranks cell
This layer produces a geometric, obstacle-fpegh from — Sequences based on the existence of feasible paths within th
the initial point to the destination. The lower layer accsun 9Ven sequence. In this paper, we use the results of [11], in
for the kinematic and dynamic constraints (abbreviated £&&njunction with the extended graph search algorithm of [10
kinodynamiaonstraints [4]) that real vehicles must obey, andO obtain a generic path planning scheme which searches for
it involves smoothening of the geometric curve found by thé channel of cells from the initial point to the goal, as well a
path planner, and then imposing a suitable time parametrizZi" & feasible path lying within that channel simultanegusl
tion along this curve to obtain a referericajectory. thus guaranteeing (by construction) that the channel will

A widely used class of geometric path planning methoddWays contain a feasible path. _
is the class of methods based on rectangular cell decomposiOUr work is related to the work of Refs. [12]-{14], with
tions. These methods partition the obstacle-free configura SOme critical differences which we highlight here. Refer-
space into convex, non-overlapping regions, called catlg, €NC€s [12]-[14] consider a triangular plecom_posﬁmn of the
then search the associated topological graph for a sequeff@ironment and use controllers (designed in [12]) for the
of adjacent cells from the initial point to the goal [1 ch.vehicle model that either transfer the vehicle from one cell
5 and 6]. Multiresolution schemes that use cell decompostiQ another, or confine the vehicle within a cell. For vehicle
tions of varying fine/coarse resolution are computatignallModels that areompletely controllable in the presence of
efficient, and examples of such schemes include the Wideﬂpstaclesthese controllers can guarantee transition from a
used quadtree method [5], [6], and the wavelet-based c&iVEN cell to an gdjgcent cell, without intersecting anyeoth
decomposition schemes in [7]-[9]. The result of a geometrﬁe”’ from every initial state of the vehicle. Consequently,

path planning algorithm based on a cell decomposition is € geometric path planning algorithm is free to plamy
path (compatible with higher level logic specifications) on
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the central tenet of the motion planning schemes presentedn [10], we demonstrated, using a counter-example, that
in [12]-[14] is no longer valid: arbitrary sequences of celtransition costs defined o cannot encode information
transitions cannoin principle be guaranteed from arbitrary about path curvature, and consequently, there may not exist
initial states. The simplest example of a vehicle kinenahtic any functiong for which the solution to Problem 1 would
model that violates the complete controllability assumpti result in a channel of cellguaranteedo contain a feasible

is the Dubins car model. For any given sequence of ceflath (for a given upper bound on the curvature of the
transitions, there may exist a set of initial states of th@sle  path). As a remedy to this problem, we proposed the use
from which it is impossible for the vehicle to execute thabf transition costs defineé—tuples of nodes (i.e. histories

sequence of cell transitions. of previous transitions), for some fixed > 2, such that
The Dubins car kinematical model is given by the elements of eack—tuple are pairwise adjacent. The
#(t) = s cos (1), algorithm in [10] works on_ a lifted %re?pﬁ{i = (VH,EH),
. . with the set of nodes defined & = {(io,?1,...,iH) :
y(t) = ursinO(t), (ip_1,ix) € B, k = 1,...,H, i, # i, forpr €
0(t) = ua(t), {0,...,H}, with p # r}, where H is a positive integer.

wherezx, y, and @ are, respectively, the position coordinateéAn element] € Vg is defined to be adjacent 8 € Vg

|
) . . . (H+1) p(H+1) (k) — yk=1) =
and the orientation of the vehicle with respect to a pre'—f ( " o d)J(% £, i(HHj Ih ,I(f]?)r ;veryk _h
specified inertial axes systemj; = 1 is the forward 2,...,H+1,an 7 , Where enotes the

th H
speed of the vehicle; and, is the steering control input. kh elﬁment O; tf|1|e(H_ + 1)—tuplt;I.hThe_ edg_e sebp Is
The set of admissible controlg; is the set of piecewise then the set of all pairg/, 1), such thatl is adjacent to/.

continuous functions defined on the intery@ 7] that take For given initial d"ﬁ?d terminal nodess, ic € V, an

values in[—1/r,1/r], for a pre-specified > 0. The set of admisiible pathll o ({151757{17 ...,JG) in Gy is such
kinematically feasible paths for the Dubins car is the set dhat J;' € Vu, (J;_y,J;) € Eu, k = 1,...,Q, and
continuously differentiable paths with curvature at most. Jél"(l) = ig, Jg"(HH) = ig. Note that every admissible
def . .
[l. GEOMETRIC PATH PLANNING IN RECTANGULAR pathI1 = (Jg',Ji',...,J§) in Gu uniquely corresponds
CELL DECOMPOSITIONS to an admissible pathr %< (437,47, ...,§%) in G, with
A. Basic Framework P=Q+H andJ,?’(l) =jf, fork=0,1,...,.P—H -1,
We consider a uniform decompositiahy of the environ- and Jo = (JP—P{’ o ’31_3)- ]
mentWV, consisting ofN cells, such that every cell if; is a For every pair of adjacent nodes éf; we define a non-

square of sizel. A cell ¢ (i) € Cy is identified by the location Negative cost functioryy : Ex — R, that assigns to
(z;,y;) of its center in some pre-specified set of Cartesiaf@Ch pair of adjacent nodes @y a non-negative number.

def Consider now the following shortest path problem@an.
axes. We may then construct a grapi= (V, £), such that Problem 2: Let the cost of an admissible pati =

each element in the set of nodéscorresponds to a unique, .
P q (Jo,Jl,...,JQ) in Gy be

obstacle-free cell. We label the nodes1ag,..., N. Two

nodes areadjacentif the corresponding cells are geometri- Q

cally adjacent The edge seE C V x V consists of all pairs Ju(Il) = ZgH (Jily, I35 . (2)
(i,4), i,j € V with nodes: andj adjacent. k=1

Consider a non-negative edge cost function — R, Find an admissible path* such that7y (I1*) < Jx(I1) for
that assigns to each pair of adjacent nodesji non-  eyery admissible pathl in Gy.

negative number (the cost of transition between the two _

nodes defining the edge). For given initial and terminal isode In [10], we held that a geometr|c pth planner th_at SGEkS_ to
is, i € V, anadmissible pathr def G, 4T Ty in G solve Problem 2 can be designed to incorporate information
S G o L JosJts-- -0 Jp) M about the feasibility of traversal of the channel of cellatth

is such thatj; € V, (ji_,,jF) € E, k = 1,..., P, with

J§ = is, 5 = ic, and T # j7. for p.r € {0,..., P}, it finds. In Section 1I-B, we formulate such a geometric

: ) . : lanning algorithm.
with p # 7. Ge_(_)metnc_ path planning algorithms based_ O'}? We label the elements df'y by natural numbers, and in-
cell decomposition typically attempt to solve the follogin L .
. : . troduce a bijections : By — {1,2,...,|Eg|} that uniquely
problem, for a suitably defined cost functign . i
associates each element Iy with a natural number as

Problem 1: Let the cost of an admissible pathbe follows. Let (I,.J) € Ey, I,J € Vi be an edge inEy.
P We define thdile associated witl{./, I) as the sequence of
J(m) =" g(GF_1,37))- (1) cells associated withi(V), ..., JH+1 and we label this tile
k=1 by a = ¢(I, J). Alternatively, we denote the edge associated
Find an admissible path* in G such that/(*) < J(r) for ~ Wwith a particular tile labeled: by (1%, %) © ¢! (). With
every admissible path in G. each tilé o, we may associate a vectgf € R? such that
1We consider 4-connectivity for this work, that is, cells ttheave two 2In a minor abuse of notation, we denote a tile labeledby the same

vertices in common are said to be adjacent. symbol a.



n® is normal to the segmerde (1%W) N de (I*@) and 5 Z(I) =&, O(I) =0
points inside the celt (1*(?)).

We may now define dile motion planning algorithm
TILEPLAN as any algorithm which determines if a give
tile may be feasibly traversed by the vehicle frorspgecific

procedure Main()
n L Initialize();
2: while P # @ do

initial condition. More precisely, we specifyiTEPLAN as 3 P < PSS
an algorithm which: 4: for all J € V such that(I, J) € FEy do
. : . 5: a= {1, [EFD ] JEHFDY
1) takes as input a tilex and a vehicle statg€§ = N i =
(x 0 ) c (ac (IO‘=(1)) N ac (IQ(Q))) % [—ﬂ' 7'{'] sat- 6: (feas, T7§, U) «— TILEPLAN (a, :(I))
isf;’igg’ 0 ’ 7. if d(I) +gr(I,J) < d(J) andfeas = 1 then
8: d(j) — d(i) + g(i, 5);
[cos Ay sin 90] n* > 0, 3) 9: b(j) «—i; 2(J) &
) . ) 10: O(J) —T; T(J) < ug;
2) determines if there exist 11: P—PU{JY
a) numbersTy, Ty, ..., T5 satisfying 79 < T9* < 12  Choosel € P;
...<Tg, and
b) an admissible contraly € Urg, The proposed algorithm produces a paffi* =
such that the resultant state trajectaryt; &, u®) = (JI', JI,..., JE") whereJg' ") = ig and Jp "(*Y =
(z(t),y(t),6(t)) satisfies ic. As noted previouslylT* corresponds to a path* in G.
(Ia-@) te (0,70 The control input for the vehicle which traverses the channe
¢ ’ R of cells associated with* is given by
(2(6),5(1)) S o - -
e(Ih) e [T 1 Thl wm ), te| Y 0U), Y oW )+e() |,
c(JoHTY) =Ty, =1 =1
3) returns failure ifTY, Ty, ..., T5 andu® are found to for eachk = 1,..., P. Thus, by construction, the proposed

not exist, or else returngy, the state¢ (77;<5, u§)  algorithm satisfies the requirement of hierarchical censis
and the controlu§ if Jf"(H+1) # iq, or returnsTy  tency.
and the controkg if J&F T = .

In summary, TLEPLAN accepts a tilen € Vi and an
initial state¢; € (dc (1MW) Noc (1?)) x [—m, 7] x ¥ as
inputs and returns outputeas, 7', &, and u (as described - _
in requirement 3 above), wherfeas is a boolean output |'-EPLAN. We specified what TEPLAN was required
indicating success or failure ofilfE PLAN; T is the duration @ d0, but did not specify how exactlyiTEPLAN would
of traversaly is the control input that enables traversal of thé2ccOmPplish those requirements. In this section, we shee som

tile «; andé; is the state at timé&'. We indicate the execution light on this i.ssue.igonsider the following p;?'oblem.
of TILEPLAN with inputsa andé by TILEPLAN (a, €). Problem 3: Let R™ be a rectangular channebnd letiV

be a point on any of the three edges®f which does not
B. The Proposed Algorithm intersectR,. Let « € [—m, 7] be a specified angle. For any

Suppose that a tile motion planning algorithm whicts€t Of positive real numbers > 0,7 =1,..., C, determine
satisfies the above requirements is available. We are ndiphere exists a patfil such that:
ready to describe the proposed geometric path planningl) The initial configuration ofl is (W, «),
algorithm, as a modified label correcting algorithm (cf. 2) The final configuration of the patll lies in a set
[15], [16]), which searches for a path #y;. We introduce defined by the Cartesian product of a specified edge
three functions in addition to the label and backpointer of the rectangle? (different from the edge coinciding
functions of the standard label correcting algorithm: a  with rectangleRc_1) with a specified set of allowable
function 2 : Vi — R? x S! that associates a vehicle state ~ terminal tangent angles,
with each node inVy, a function® : Vi — R, that  3) The pathIl does not leaveR®, i.e. (x(s),y(s)) €

IIl. TILE MOTION PLANNING

The description of the proposed motion planning algorithm
in Section 11-B relied heavily upon the tile motion planning

associates a time of traversal with each nodé/in and a US_ R, for everys € [0,1],
function Y : Vi — U that associates a control input with 4) The curvature ofl at any point in rectangle?,, is at
each node ir/y. The proposed algorithm is then as follows. mostr,, !, for everyn =1,...,C.
To the solve Problem 3, we consider two basic problems
procedure Initialize() defined on a single rectangle. These problems, which we
1P — {Is}, d(Is) « 0; denote Problem T1 (respectively, Problem T2) are concerned

: forall J € Vg\{Is} do
A(J) = H\{ S} 3By a rectangular channelwe mean a sequence of disjoint rectangles
( ) = 00, of arbitrary dimensions such that every pair of successeatangles has a
I — Ig common edge.
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dy Vv

Af‘ﬁ > B_ V[./Zioz Vs
Z | By)
é R R ds,2 l
- 1 2 . p |us |
A B(y) ot U2 TV & lvi ws Zy
d dg, | *° -
' o da,2
'Wa Y Rs @ ai Ry
y ) Us Yy
'DL’T C Fig. 2. lllustrative example for the proposed algorithm.
(a) Type 1 admissible path. — o
dy wesetd, =as; = 7,08, =a; = —5. We solve Problem T1
A B for each pointQ = (0, q), q € [0, d4,2] on the segmerit, V,,

and we obtain the values taken by the functiengq) and
64(q)

RectangleR; involves traversal across adjacent edges, and
the entry and exit segments d@t; may be aligned with
segmentsAD and DC' of Fig. 1 after a reflection about
an axis parallel to the segmetii Vy, followed by a rotation
through? rad. Since the total number of reflections occurring
in the transformations required fdét; and R, is one (odd),

we set
(b) Type 2 admissible path. _
. _ Bi(a) = —ay(ys — (g —va)),
Fig. 1. Setup for the basic problems. ﬁ?,(q) _ —54(Z3 - (q - u4)), g€ [yg’ 23],

Wherez3 = d3,1, Y3 = K(U3V4), Vg4 = d472, and Uy =

. i . 0 (see Fig. 2). We solve Problem T2 for each point
with the curvature-bounded traversal across a pair of taaekralp — (0,p), p € [0,ds2] on the segment/sV; to obtain

edges (respectively, adjacent edges) of the rectangle avith . _ )
given initial condition, while satisfying an additional o values taken by the functions;(p) andas(p). Proceeding

straint: the terminal orientation must lie in a pre-spedifiefurther similarly, we may obtain the values taken by the

set [, 3]. In [11], [17], we propose numerical solutions tofunCt'OESQQ(Q)’EQ(q)’ g € [0,d2] and by the functions
Problems T1 and T2 and propose an algorithm that rec?(q)’al(q)’ g € [0,d15]. Let the prescribed entry point

. T have coordinate$0, w) in the coordinate axes attached
sively solves Problems T1 and T2 for individual rectangle ) R Then there exists a path satisfving the requirements
of the channel to solve Problem 3. Here, we outline thi L P fying q

) . . . Stated in Problem 3 if the prescribed initial tangent angle
algorithm using an illustrative example. " _
2 (p b . iar ch | with f satisfiesa € [a; (w), @y (w)] .
Let R* = {Rn},_, be a rectangular channel with four  the yecyrsive analysis outlined above allows us to synthe-
rectangles, as shown in Fig. 2, and#gt>0,n =1,....4, iz paths cell by cell. The synthesis method relies on the

be given. Let,, Vy, n=1,....4 andYy, Zs be points @s 5.4 that the cone analysis described above provides a set of
shown in Fig. 2. Given a prescribed initial entry poiit  g1qaple terminal conditions for each cell, i.e., a cone of

on the segment/; 1 and given a prescribed initial tangent ) o\yaple orientations associated with each point on thie ex

anglea € [—3, 5], we wish to determine if there exists 2segment of that cell. A feasible path traversing the remeind
of the channel exists from all such terminal conditions. One

path satisfying the conditions described above. We attach
coordinate axes system to each rectanglewith the origin -\, then pick any of these terminal conditions and compute
a unique path, since the initial condition is already spedifi

at the pointU,,, with the positivex-axis alongU,Y,,, and
with the positivey-axis alongU,,V;,. The dimensions of each  1pa result of the synthesis is a path (withéach cell

rectangle along the andy axes are denoted, respectively,yhich is a concatenation of circular arcs of radiusand
asdn, andd, . For each rectanglé?,, the solution of gy qight jine segments. For the Dubins vehicle kinematic
Problem T1 (or Problem T2, as applicable) provides anglefsqe| the steering input required for following such a
a(g) anda(g) for any g € [0, dy 2], such that the curvature- ,ncatenated path is uniquely determineg:= 1 along a
bounded traversal _oRn.|s pos_smle if the initial orientation counter-clockwise circular ara;; — —1 along a clockwise
at point@ = (0, ¢) lies in the intervala(q), @(q)]- circular arc, andi, = 0 along a straight line segment. Since
We define functionsas(q) def 5 a5(q) def —5,q9 € thesynthesis is performed cell-wise, the duration foreraal
[0,ds2], and we note that the last rectangi®d involves of each cell (required to be computedLEPLAN) is easily
traversal across parallel edges. Next, we note that the tdetermined. In summary, the existence analysis and syiathes
tal number of reflections occurring in the transformationsf curvature-bounded paths outlined here serves as a tile
required forR, and (the fictitious rectangld}; is zero, and motion planning algorithm for the Dubins vehicle.



IV. SIMULATION RESULTS AND FURTHER REMARKS and on tiles inGyyi. Let £ be the initial state pro-

In this section, we define the cost functign as a function Vided as an input to both TEPLAN(H) and TiLE-
that associates with each tile the length of the path reurn&-AN(H + 1). Suppose TLEPLAN(H) computesu,, i as
by TILEPLAN. In particular, for a tile labeled byx € the control required to traverse the ce(ij’)H) of the tile
{1,2,...|Ex|} and an initial condition{§ = (zo0,%0,00)  (Jom.m, Jm+1.m), and TLEPLAN (H + 1) computeSu,, g1
let T1* be the duration of traversal returned byLEPLAN. 55 the control required to traverse the e 172 of

Then we define m,H+1
w I the tile (Jom b1, Jmt1,1+1). Correspondingly, leg,,,  and

&m, 41 be the terminal states, respectively, resulting after the
controlsu,, g andu,, g1 are applied at.

Since our path synthesis algorithm, based on whigleT
PLAN computes the controls required for traversal of the

first cell, performs the synthesis cell-wise, and since the

F|g_ures 3 and_4 show r_esults of 5|m_ulat|ng the propo_squt cell of both the tiles under consideration is the same,
algorithm over simple environments with the cost function 4101 will differ from w,,, 5 only if there exists no control
(4). Figure 3 shows the solutions to the benchmark exam mm the statet,, ; that v%uld enable traversal through the
we discussed in [10] to emphasize the fact that cost fum;tiorl]emainder of tﬁg 16T 41, Tt 141, €., through the
based on edge transitions @ alone are not sufficient to sequence of cellg® D J"Z;“}+’3)+A'S a <’:onse Lence
capture curvature information. In particular, the fourules TlflE PLAN (H) Wo derelt’u'r.n' ’faﬁld%ri/\./hen i proce(;ses th'e
in Fig. 3 show the different channels obtained for differen{_II g 7 ), since the first + 1 cells of this
bounds on the curvature, whereas any cost function defined (Tm1,01, it (H+3)
on & would result in the channel shown in Fig. 3(a). Simi-Il€ aré preciselyy, ..., J, gy In other words, for

every tile (Jy, i, Jm+1,2), m=0,1,...,P—H, if the cost

larly, Fig. 4 shows the difference between resultant chisnne N
when different bounds on the curvature are imposed. returned by TLEPLAN (H) is different from the cost returned

by TILEPLAN (H +1) for the tile (Jp, mr+1, Jm+1,05+1), then

T
Uuq dt = ulTla, Ja’(H+1) 7& iGa
gu (I%, %) = O (@)
Ul/ dt = Ung, Ja"(H+1) = ic;.
0

A. Dependence o# TILEPLAN (H) must return an infinite cost (failure) for the
In this section, we highlight an important monotonicitytile (Jm-+1.1, Jm+2,). The required result (5) then follows.
property satisfied by the cost function defined in (4). In u

what follows, we denote the path G corresponding to . -
a pathr in G by 11, and we denote the path computed We can now show an important monotonicity property

in Gy by the proposed algorithm bl]I;}H- The subscript about the optimality of paths found by the proposed algo-

denotes that the proposed algorithm used the lifted graéﬂy&' ilr_]e;rl; gzﬂt]hfer onr:izxtlngnw?tl:]mn%eg}?; ensodes that may

Gy in its computations, while the superscript denotes that Proposition 2: Let H be a positive integer, and mzﬂ

. *, L

the path {srepresentedn G- Thuf‘,’g[H Len, Sgnotes be in the path inGy resulting from the proposed geometric
the path ing,, corresponding tdI;”, and bothIl;” and oy hianning algorithm. Thery (") decreases mono-
IT;~ correspond to the same pathgin On the other hand, tonically with increasingH.

H*L’H, L € Nis the path computed by the proposed algorithm  p.5of et = be an admissible path i, and letlT” be
when it uses the lifted grapi,, for its computations. Note o corresponding path @ . It follows from Lemma 1 that
that, in general,the paths & corresponding thgH and  the sequence of cost functiofs (IT¥), H = 0,1, ..., P—1

*, H . . . . )
I are different. ~is monotonically decreasing, i.e.,
Lemma 1:Let 7 = {jf,j7,...j5} be an admissible 5 ) 0
path in G, and let T1” = {Jow, Jisz,...,Jp_m.u} Tp_(II7) <... < (1) < Jo(I17). (6)

b?ﬂ thﬂe correggonding path iy, where J,, g b: The proposed algorithm solves Problem 2, and hdiig€
(ot oodigm)s m = 0,1, P — H. Let gy be  \iinizes 7. e, 7y (") < Jy(I). Since 117

the cost function defined in (4). Then for evell > 0, was arbitrary, this inequality holds fofl# — Hgill,
Tg 41 () < g (1), () e, Ju(y") < Ju(;")). Then it follows from
Proof: For a givenH > 0, the costJy (II') of  (6) that Ju(II;") < Ju (115", and in general,
H . * P— *, P— *
the hpe}l'[hﬂ les _comfputed rk:]Jy gxecutlng ITEPLAN fo_r ~71571(.H15’P 1) S jp,Q(HP'f 2) << T(I). L
each tile inIl™, i.e., for each pai(.Jy, #, Jmi1,1), m = An informal interpretation of the above results which is

0,1,...,P — H — 1. By definition of the lifted graph eyigent in the proof of Lemma 1 is that, & is increased,

Gu, the edge( )i i, Jmy1,m) IN G is a node inVii1,  the proposed algorithm will erroneously reject fewer paths

and the tile (Jy, g+1, Jms1,m+41) IN G4 is the triplet G from is to ic as infeasible.

(Jo 1y Jm+1,H, Jm+2,1). Thus, the first node of the tile

(Jom,H+1s Jm+1,0+1) IN Gu41 is the same as the first node V. CONCLUSIONS

of the tile (Jy, i, Jm+1,1) IN Go. We presented a novel geometric path planning algorithm
Let TILEPLAN(H) and TiLEPLAN(H + 1) denote, re- based on rectangular cell decompositions which simultane-

spectively, the execution of ITEPLAN on tiles in Gy  ously finds an obstacle-free channel of cells from the ihitia
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Fig. 4. Simulation result: simple maze-like environmenheTcurvature

bound in each case is™!. Here, H = 3.

point to the goal, as well as a continuously differentialaép
with a pre-specified upper bound on its curvature. We point
out that although we have focused on a specific example
of a vehicle model (the Dubins car), the execution of the
geometric planner itself is not restricted by the charésties

of this choice. In fact, we have proposed a scheme where
the details of motion planning for the specific vehicle at
hand are left to the so-called tile motion planning algarnth
TILEPLAN, and the geometric planner uses information
provided by TLEPLAN in a manner independent of the
particular tile planning algorithm.
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