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Abstract— We consider a Dirichlet-Voronoi like partition
problem for a small airplane operating in the horizontal plane
in the presence of winds that vary uniformly with time. It
is shown that the problem can be interpreted as a Dynamic
Voronoi Diagram problem, where the generators are not fixed,
but rather they are moving targets to be reached in minimum
time. The problem is solved by reducing it to a standard Voronoi
Diagram by means of a time-varying coordinate transformation.

I. I NTRODUCTION

The concept of “Dirichlet-Voronoi Diagram,” first intro-
duced by Dirichlet in 1850 [1], and subsequently generalized
by Voronoi in 1908 [2], has found a large spectrum of
applications in different fields, including computer graph-
ics, computer vision, computational geometry, robotics and
autonomous agents [3], [4], [5], [6], [7]. A Dirichlet-Voronoi
Diagram1 describes a special partition of a topological space
equipped with a generalized distance function, which admits
a specific relation between each element of the partition and
a given discrete set of points, called theVoronoi generators.
In particular, each element of the partition, known as the
Dirichlet (or Voronoi) domain, is associated uniquely with a
Voronoi generator, in such a way that a point of the space and
a Voronoi generator being both in the interior of the same
domain implies that the particular Voronoi generator is the
“closest” to this point among all other Voronoi generators
[4]. We shall refer to the partition problem of a subspace
of the n-dimensional Euclidean space (with respect to the
Euclidean distance) as the problem of thestandard Voronoi
Diagram(also known in the literature as the ordinary Voronoi
Diagram) and as thegeneralized Voronoi Diagramproblem
otherwise. A detailed treatment of the Voronoi Diagram
problem for a plethora of “distance” functions and topologies
can be found in [8], [9] and the references therein.

Generalized Voronoi partition problems that are perti-
nent to autonomous agent applications, when the agents’
dynamics are taken into account, may not be reducible to
generalized Voronoi Diagram problems, for which efficient
construction schemes exist in the literature. In this work
we deal with a partition problem that cannot be put under
the umbrella of the available classes of generalized Voronoi
Diagram problems. In particular, we deal with the partition
problem for a small airplane operating in the Euclidean plane
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in the presence of a known wind velocity field (known as the
Zermelo’s navigation problem [10]) with the generalized dis-
tance being the minimum time from the agent configuration
to the goal destination. We henceforth refer to this partition
of the configuration space as the Zermelo-Voronoi Diagram
(ZVD).

A special case of the ZVD problem, when the wind
is constant, is treated in [11], where the solution of the
ZVD problem is associate with a standard Voronoi Diagram
by means of a coordinate transformation. The approach
presented in [11] is, however, of limited scope since it is
based on geometric constructive arguments that apply only
to constant wind velocity fields. In this work, we introduce
a methodology that generalizes the results of [11] under a
framework that may prove powerful for dealing with similar
partition problems in the future. In particular, by adopting the
interpretation of Zermelo’s problem as a moving target prob-
lem [12], we reduce the ZVD problem to a Dynamic Voronoi
Diagram problem [8], that is, a Voronoi Diagram where the
Voronoi generators are not necessarily fixed, but rather they
are moving targets. We solve this Dynamic Voronoi Diagram
problem by associating it with a standard Voronoi Diagram
by means of a time-varying transformation in the case of a
time-varying wind field. Furthermore, we introduce the Dual
Zermelo-Voronoi Diagram (DZVD) problem, which leads
to a partition problem similar to the ZVD problem, with
the difference that the generalized distance of the DZVD
problem is the minimum time of the Zermelo navigation
problem from a Voronoi generatorto a point in the plane.
Since the minimum time of the Zermelo navigation problem
is not a symmetric function with respect to the initial and
final configurations, the ZVD and the DZVD are not, in
general, identical.

The case of a non-stationaryspatially-varyingwind field
is more complex and a (semi-)analytic treatment of that
problem is doubtful. To the authors’ knowledge, the only
available result in the literature that deals with spatially-
varying (albeit stationary) wind fields are given in [13],
[14], where a purely computational/numerical solutions of
the problem is presented.

The rest of the paper is organized as follows. In Section
II we formulate the Zermelo-Voronoi Diagram problem, and
we subsequently demonstrate that it can be interpreted as
a Dynamic Voronoi Diagram in Section III. In Sections IV
and V we present a scheme for constructing the ZVD and
the DZVD respectively by means of a particular homeomor-
phism applied to a standard Voronoi Diagram. In Section VI
we provide simulation results and finally, we conclude with
a summary of remarks in Section VII.



II. PROBLEM FORMULATION

The Zermelo-Voronoi Diagram problem deals with a
special partition of the Euclidean plane with respect to a
generalized distance function, which is related to a classi-
cal minimum-time problem named after the mathematician
Zermelo, who was the first to pose and solve this problem
[10]. In particular, we consider the minimum-time steering
problem for a vehicle whose motion is described by the
following equation

ẋ = u+ w(x, t), (1)

wherex
△
= (x, y)T ∈ R

2 is the position vector of a reference
point of the vehicle,u ∈ R

2 is the control input and

w
△
= (µ, ν)T ∈ R

2 is the velocity vector field induced by
the winds. We assume that the state space of the system,
denoted asX, is some connected subset ofR

2, and the set
of admissible control inputs, denoted asU , consists of all
measurable functions that take values in the closed unit ball.
The Zermelo’s navigation problem (ZNP) can be formulated
as follows.

Problem 1 (ZNP):Given the system described by equa-
tion (1) determine the control inputu∗ ∈ U such that

i) The controlu∗ minimizes the cost functionalJ(u)
△
=

Tf , whereTf is the free final time.
ii) The trajectory x∗ : [0, Tf ] 7→ X generated by the

controlu∗ satisfies the boundary conditions

x∗(0) = x0, x∗(Tf) = xf . (2)

The following proposition follows by virtue of Filippov’s
theorem on the existence of solutions for minimum-time
problems [15, p. 311-317].

Proposition 1: Given two points x0 and xf in X, the
existence of a feasible path fromx0 to xf implies the
existence of a minimum-time path as well.

The solution of Problem 1 is the controlu∗(θ∗) =
(cos θ∗, sin θ∗), whereθ∗ satisfies the following differential
equation [16, pp. 370-373]

θ̇∗ = (µx − νy) cos θ
∗ sin θ∗ + νx sin

2 θ∗ − µy cos
2 θ∗, (3)

whereµx, µy, νx, νy denote partial derivatives.

Next, we formulate the Zermelo-Voronoi Diagram prob-
lem (ZVDP).

Problem 2 (ZVDP):Given the system described by equa-

tion (1), a collection of goal destinationsP
△
= {pi ∈ X : i ∈

I}, whereI is a finite index set, and a transition cost

c(x0, pi)
△
= Tf(x0, pi), (4)

determine a partitionV = {Vi : i ∈ I} of X such that

i) X =
⋃

i∈I Vi.
ii) Vi = Vi, for eachi ∈ I.
iii) for each x ∈ int(Vi), c(x, pi) < c(x, pj) for j 6= i.

The set of goal destinationsP is known in the literature as
the set ofVoronoi generatorsor sites, whereas the partitionV

constitutes theZermelo-Voronoi Diagramof X. Furthermore,
an elementVi of V is called the Dirichlet domain or
the Voronoi cell or the Voronoi polygonof the Zermelo-
Voronoi DiagramV. Two Dirichlet domainsVi andVj are
characterized as neighboring if they have a non-empty and
non-trivial (a single point) intersection. It follows readily
from the formulation of Problem 2 and the basic properties of
the standard Voronoi Diagram that a pointx ∈ ∂Vi satisfies
c(x, pi) = c(x, pj) for somej ∈ I, with j 6= i, if Vi and
Vj are neighboring Dirichlet domains. Next, we show that it
is possible to associate the ZVDP with a Dynamic Voronoi
Diagram problem, that is, a Voronoi-like partition problem
in the plane when the Voronoi generators are moving targets,
by means of a time-varying transformation.

III. T HE ZERMELO-VORONOI DIAGRAM INTERPRETED

AS A DYNAMIC VORONOI DIAGRAM

The minimum time of the ZNP does not provide us, in gen-
eral, with a generalized distance function that would allowus
to reduce the ZVDP to a generalized Voronoi Diagram, for
the construction of which efficient computational techniques
are available [8]. Therefore, we need to adopt an alternative
approach.

In order to simplify our discussion we assume that
|w(x, t)| < 1, which implies complete controllability of the
system (1) (see for example [16]). Thus, we will henceforth
assume thatX = R

2. We show that it is possible to associate
Problem 2 for the case whenw = w(t) with a standard
Voronoi Diagram.

Problem 3 (ZNMTP):Given the system described by the
equation

Ẋ
△
= ẋ− w(t) = u(t), X(0) = x0 (5)

determine the control inputu∗ ∈ U such that

i) The controlu∗ minimizes the cost functionalJ(u)
△
=

Tf , whereTf is the free final time.
ii) The trajectoryX∗ : [0, Tf ] 7→ R

2 generated by the
controlu∗ satisfies the boundary conditions

X∗(0) = x0, X∗(Tf) = xf −

∫ Tf

0

w(τ) dτ. (6)

It is clear that Problems 1 and 3 are equivalent, in the sense
that a solution of Problem 1 is also a solution of Problem
3, and vice versa. Furthermore, an optimal trajectoryX∗ of
Problem 3 is related to an optimal trajectoryx∗ of Problem 1
by means of the time-varying transformation

X∗(t) = x∗(t)−

∫ t

0

w(τ)dτ. (7)

By virtue of (3), for w = w(t) the optimal control of
Problem 1 is given byu∗ = (cos θ∗, sin θ∗) (x coordinates)
whereθ∗ is a constant. Furthermore, equation (5) implies that
the same controlu∗ is also the optimal control for the moving
target Problem 3 (X coordinates). The application of a
constant input to the system described by (5) implies that the
optimal path inX-coordinates is a straight line segment, and
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Fig. 1. Time-optimal control strategy for the ZNMTP.

thus the minimum time (invariant under the transformation
(7)) is the length of that line segment (since the pursuer
moves with constant unit speed the time of motion equals
the length of the path). The optimal control strategy for the
ZNMTP is depicted in Fig. 1 (constant bearing angle pursuit
strategy). In particular, the pursuer (denoted as a black dot)
and the moving target (denoted as green dot) start at time
t = 0 from x0 and xf respectively. Since the angleθ∗ is
necessarily constant , the pursuer is constrained to travel
along a line segment that passes through the pointx0 with
constant unit speed, whereas the target moves along the time-
parameterized curve given byξ(t) = xf −

∫ t

0 w(τ) dτ . From
Proposition 1 it follows that there exists a timeT > 0 such
that X(T ) = ξ(T ). The optimal value ofθ∗ corresponds to
the leastT , denoted asTf , such thatX(Tf) = ξ(Tf). It is
easy to show that the minimum timeTf is the least positive
root of the following integral-algebraic equation

T = |xf − x0 −

∫ T

0

w(τ) dτ |, (8)

whereasθ∗ is given byθ∗ = Arg
(

(xf − x0 −
∫ Tf

0 w(τ) dτ
)

.

The idea of reducing the ZNP to a moving target problem
in the Euclidean plane with no winds (ZNMTP), can also be
applied to the ZVDP. In particular, the ZVDP can be formu-
lated as a Dynamic Voronoi Diagram Problem (DVDP).

Problem 4 (DVDP):Given the system described by equa-

tions (1), a collection of moving targetsP d △
= {Pi : Pi(t) =

pi −
∫ t

0
w(τ) dτ, i ∈ I}, whereI and pi as in Problem 2,

and a transition cost

cd(x0,Pi)
△
= |x0 − Pi(Tf(x0, pi))|, (9)

determine a partitionV d = {V d
i : i ∈ I} of X such that

i) X =
⋃

i∈I V
d
i .

ii) V d
i = V d

i , for eachi ∈ I.
iii) for each x ∈ int(V d

i ), c
d(x,Pi) < cd(x,Pj) for j 6= i.

Problem 4 deals with the characterization of the sets of
initial conditions from which the agent will intercept the
moving target setP d in minimum time. The generalized

distance function is the Euclidean distance between the initial
configuration of the agent and the location of the moving
targetPi at a specific instant of time, namely,Tf(x0, pi), that
is, the minimum time of the ZNP fromx0 to pi = Pi(0).
Figure 2 demonstrates the interpretation of the ZVDP as a
Dynamic Voronoi Diagram problem. In particular, the target
set, which at timet = 0 is the set of the Voronoi generators
P = {pi, i ∈ I} of the ZVDP, moves uniformly with time
along the integral curves of the velocity field−w.

As we have shown previously, the system (5) withX(0) =
X0 reaches a pointXf (not prescribed a priori) in minimum
time Tf = |X0 − Xf |. Thus, by reversing time in (7), the
system (1) starting at pointx′0 at t = 0 reaches the point
xf = Xf in minimum timeTf = |X0 − Xf |, provided that

x′0 = X0 −

∫ d(X0,Xf)

0

w(τ) dτ, (10)

whered(X0,Xf)
△
= |X0 − Xf |.

For each Voronoi generatorp, equation (10) induces a state
transformationfp : R2 7→ R

2, where

fp(X)
△
= X−

∫ d(X,p)

0

w(τ) dτ. (11)

The following proposition will prove useful for the fol-
lowing discussion.

Proposition 2: Given p ∈ R
2, the state transformation in

(11) is an injective mapping with non-singular Jacobian for
all X ∈ R

2, provided that|w(t)| < 1 for all t ≥ 0.

Proof: First we show thatfp is an injective mapping.
Let X1 andX2 be such thatfp(X1) = fp(X2), equivalently,

X2 − X1 =

∫ d(X1,p)

d(X2,p)

w(τ) dτ. (12)

By hypothesis|w(t)| < 1, and thus (12) gives

|X2 − X1| ≤ |d(X1, p)− d(X2, p)|. (13)

The injectivity of fp follows readily in light of the triangle
inequality. The Jacobian offp at X is equal to

Dfp(X) = I2 − w(d(X, p))(X − p)T/d(X, p). (14)

It can be easily shown that the nonzero eigenvalue of the
rank one matrixw(d(X, p))(X − p)T/d(X, p) is given by

λ2(X) = wT(d(X, p))(X − p)/d(X, p) ≤ |w(d(X, p))| < 1.

Thus 0 /∈ spec(Dfp(X)) and the JacobianDfp(X) is non-
singular for allX ∈ R

2.

The following two propositions follow readily from the
previous discussion.

Proposition 3: The coordinates of every element of the
setP are invariant under the state transformation (11), that
is, fp(p) = p for all p ∈ P .

Proposition 4: Given p ∈ R
2, then c(x, p) = |X − p|

provided thatx = fp(X).
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Fig. 2. The Zermelo-Voronoi Diagram can be interpreted as a
Dynamic Voronoi Diagram.

IV. CONSTRUCTION OF THEZERMELO-VORONOI

DIAGRAM

In this section, we demonstrate the steps for the construc-
tion of the ZVD. In particular, we show that the state transfor-
mation (11) reduces the ZVD to a standard Voronoi Diagram
for the case of two Voronoi generators. Subsequently, we
generalize the previous result to the case of arbitrary finite
sets of Voronoi generators.

Let us first consider two distinct points,p1 andp2, in the
Euclidean plane. The bisector ofp1 and p2 is the straight
line χ(p1, p2) defined by

χ(p1, p2)
△
=

{

X ∈ R
2 : |X− p1| = |X− p2|

}

=
{

X ∈ R
2 : (p2 − p1)

TX = (|p2|
2 − |p1|

2)/2
}

.

Correspondingly, the bisector ofp1 and p2 with respect to
the cost (4) is the curveγ(p1, p2) defined by

γ(p1, p2)
△
= {x ∈ R

2 : c(x, p1) = c(x, p2)}. (15)

The bisectorχ(p1, p2) dividesR2 into the two half-planes
H1(p1, p2) = {X ∈ R

2 : |X − p1| ≤ |X − p2|} and
H2(p1, p2) = {X ∈ R

2 : |X− p1| ≥ |X− p2|}.

Proposition 5: Given p1, p2 ∈ R
2, and a wind velocity-

field w with |w(t)| < 1 for all t ≥ 0, let the functionF :
R

2 7→ R
2 be defined by

F (X)
△
=

{

fp1(X), X ∈ H1(p1, p2),

fp2(X), X ∈ H2(p1, p2).
(16)

Then the following statements are true.

i) The mapF is continuous for allX ∈ R
2 and continu-

ously differentiable for allX 6∈ χ(p1, p2).
ii) The setsF (H1(p1, p2)) and F (H2(p1, p2)) are con-

nected.
iii) The sets F (H1(p1, p2)) and F (H2(p1, p2)) are

closed, and∂F (H1(p1, p2)) = ∂F (H2(p1, p2)) =
F (χ(p1, p2)).

iv) int(F (H1(p1, p2))) ∩ int(F (H2(p1, p2))) = ∅ and
F (H1(p1, p2)) ∩ F (H2(p1, p2)) = F (χ(p1, p2)).

v) The mapF is a homeomorphism.

vi) p1 ∈ int(F (H1(p1, p2))) and p2 ∈
int(F (H2(p1, p2))).

vii) For all x ∈ int(F (H1(p1, p2))), c(x, p1) < c(x, p2).
Similarly, for all x ∈ int(F (H2(p1, p2))), c(x, p2) <
c(x, p1).

viii) The bisector ofp1 and p2 with respect to the costc
satisfies

γ(p1, p2) = {x ∈ R
2 : x = F (X), X ∈ χ(p1, p2)}.

Proof:

i) First, we show thatF is well defined for X ∈
H1(p1, p2) ∩ H2(p1, p2) = χ(p1, p2). In particular,
for X ∈ χ(p1, p2), we have thatd(X, p1) = d(X, p2),
which implies thatfp1(X) = fp2(X). The continuity
of F follows readily. Furthermore, the Jacobian ofF
is well defined and invertible (see Proposition 2) for
all X ∈ R

2\χ(p1, p2), and it is given by (??) for X in
H1(p1, p2) andH2(p1, p2), respectively.

ii) It follows immediately from the continuity ofF .
iii) First, notice that the restriction ofF on H1(p1, p2), is

fp1 which is an injective, continuously differentiable
map with non-singular Jacobian (Proposition 2). It fol-
lows thatfp1 is a diffeomorphism fromH1(p1, p2) to
F (H1(p1, p2)) = fp1(H1(p1, p2)) andF (H1(p1, p2))
is closed sinceH1(p1, p2)) is closed. Furthermore,
∂F (H1(p1, p2)) = F (∂H1(p1, p2)) = F (χ(p1, p2)).
The proof forF (H2(p1, p2)) is similar.

iv) Assume, on the contrary, that there existsy ∈
int(F (H1(p1, p2))) ∩ int(F (H2(p1, p2))). It follows
from iii) that there are pointsX1 ∈ int(H1(p1, p2)) and
X2 ∈ int(H2(p1, p2)) with F (X1) = F (X2) = y. Thus
c(F (X1), p1) = c(F (X2), p1) and c(F (X1), p2) =
c(F (X2), p2), which imply, using Proposition 4, that
|X1−p1| = |X2−p1| = δ1 and|X1−p2| = |X2−p2| =
δ2 respectively, for some positive constantsδ1 andδ2.
ThusX1 andX2 lie necessarily at the intersection of
two circles centered atpi and have radiiδi, i ∈ {1, 2},
respectively. This intersection is non-empty if one of
the following conditions hold true: a)δ1 < δ2 with
|p1−p2| ≤ δ1+δ2, which implies that bothX1 andX2

are inH1(p1, p2), b) δ1 > δ2 with |p1−p2| ≤ δ1+ δ2,
which implies that bothX1 andX2 are inH1(p1, p2)
and finally, c) δ1 = δ2 with |p1 − p2| ≤ δ1 + δ2,
which implies that bothX1 andX2 are in χ(p1, p2).
All previous cases contradict the assumption thatX1 ∈
int(H1(p1, p2)) andX2 ∈ int(H2(p1, p2)). The second
part of the statement follows readily.

v) First, we show thatF is injective. First, notice
that, by definition,F is injective onH1(p1, p2) and
H2(p1, p2). Let nowX1 ∈ int(H1(p1, p2)) andX2 ∈
int(H2(p1, p2)) and assume, on the contrary, that
F (X1) = F (X2). But F (X1) ∈ F (int(H1(p1, p2))) ⊆
int(F (H1(p1, p2))) since the restriction ofF on
H1(p1, p2) is an open map. Similarly,F (X2) ∈
F (int(H2(p1, p2))) ⊆ int(F (H2(p1, p2))). Hence
F (X1) = F (X2) implies that int(F (H1(p1, p2))) ∩
int(F (H2(p1, p2))) 6= ∅, which contradicts iv). Since
F is injective it follows readily that its inverseF−1



exists and it is defined by

F−1(x)
△
=

{

f−1
p1

(x), x ∈ F (H1(p1, p2)),

f−1
p2

(x), x ∈ F (H2(p1, p2)),

with f−1
p1

and f−1
p2

continuous onH1(p1, p2) and
H2(p1, p2), respectively. It suffices to show thatF−1 is
well defined forx ∈ F (H1(p1, p2))∩F (H2(p1, p2)) =
F (χ(p1, p2)). To this end, notice that the statementx ∈
F (χ(p1, p2)) implies that there existsX ∈ χ(p1, p2)
such thatx = F (X). But X ∈ χ(p1, p2) implies
that |X − p1| = |X − p2| and hencex = fp1(X) =
fp2(X). It follows that f−1

p1
(x) = f−1

p2
(x) for all x ∈

F (χ(p1, p2)).
vi) Since p1 ∈ int(H1(p1, p2)) [p2 ∈ int(H2(p1, p2))]

and the restriction of F on int(H1(p1, p2))
[int(H2(p1, p2))] yields an open map, it follows
that p1 = F (p1) ∈ F (int(H1(p1, p2))) ⊂
int(F (H1(p1, p2))) [p2 ∈ int(F (H2(p1, p2))].

vii) Let us assume, on the contrary, that there existsx ∈
int(F (H1(p1, p2))) such thatc(x, p1) ≥ c(x, p2). Let
X ∈ H1(p1, p2) suchx = F (X). Note that iii) implies
thatX ∈ int(H1(p1, p2)). It follows from Proposition 4
that |X − p1| ≥ |X − p2|, contradicting the fact that
X ∈ int(H1(p1, p2)).

viii) The proof follows from iii), vii) and Proposition 4.

So far we have solved the ZVDP for the case of two
Voronoi generators and of a wind velocity field that varies
uniformly with time. We are now ready to state the main
theorem of this paper.

Theorem 1:Let V
△
= {Vi, i ∈ I} be the standard Voronoi

partition for the set of Voronoi generatorsP
△
= {pi, i ∈ I}.

Assume that|w(t)| < 1 for all t ≥ 0, and let the function
F : R2 7→ R

2 be defined by

F = fpi(X), X ∈ Vi, i ∈ I, (17)

wherefpi(X) = X−
∫ d(X,pi)

0 w(τ) dτ , for i ∈ I. The solution
of the ZVDP is the image ofV under the mappingF .

Proof: The Dirichlet domainVi of the standard Voronoi
partition V is determined byVi =

⋂

j 6=i Hi(pi, pj) [4].
Thus, F (Vi) = F (

⋂

j 6=i Hi(pi, pj)), which implies, by
virtue of F being injective (Proposition 5v)), thatF (Vi) =
⋂

j 6=i F (Hi(pi, pj)). The proof can be carried out similarly
to Proposition 5 using induction.

V. THE DUAL ZERMELO-VORONOI DIAGRAM

In this Section, driven by the observation that the
minimum-time “distance” function is in general non-
symmetric, that is, the minimum time to drive the system
(1) from a pointA to B, and vice versa, are not necessarily
equal, we formulate a variation of the ZVDP. In particular,
given a set ofn agents starting from given initial positions,
we want to characterize the set of terminal positions for each
agenti ∈ {1, . . . , n}, denoted as̃Vi, such that every point
in the interior of Ṽi can be reached by the agenti faster

than any other agentj, with j 6= i. We call this problem the
Dual Zermelo-Voronoi Diagram Problem (DZVDP).

The distance function for the DZVDP is defined by

c̃(pi, xf)
△
= Tf(pi, xf), (18)

that is, the minimum time for the Zermelo navigation prob-
lem from a Voronoi generatorpi to the agent’s terminal
configurationxf . The generalized distance function for the
DZVDP can be reduced to the distance function for the
ZVDP by reversing the order of the function arguments. The
construction of the DZVD is thus similar to the solution of
the ZVD.

Corollary 1: LetV
△
= {Vi, i ∈ I} be the standard Voronoi

partition for the set of Voronoi generatorsP
△
= {pi, i ∈ I}.

Assume that|w(t)| < 1 for all t ≥ 0, and let the function
F̃ : R2 7→ R

2 be defined by

F̃ (X)
△
= f̃pi(X), X ∈ Vi, i ∈ I, (19)

where f̃pi(X)
△
= X +

∫ d(X,pi)

0 w(τ) dτ , i ∈ I. The solution
of the DZVDP is the image ofV under the mapping̃F .

VI. SIMULATION RESULTS

In this section we provide numerical simulations to
demonstrate the previous developments. To this end, let us
consider the wind velocity field defined by

w(t) =

{

w̄ + ρt, 0 ≤ t ≤ t̄,

w̄ + ρt̄, t > t̄,
(20)

where w̄ = (µ, ν)T ∈ R
2 with |w̄| < 1, ρ ∈ R

2 constants,
andt̄ < (1−|w̄|)/|ρ|. We first construct the Zermelo-Voronoi
Diagram by gridding the entire space and propagating the
isocost fronts of the respective min-time problems emanating
from each generator and we compare the results with the
proposed approach in terms of computational efficiency. In
particular, given a Voronoi generatorp ∈ P , we define
the minimum cost-to-go fromx to p to be the function

Kp(x)
△
= c(x, p). Next, we define the minimum cost-to-go

to the setP as KP (x) = minp∈P c(x, p). Each Dirichlet
domain of the ZVD can be determined by projecting the
intersection of the surfacesKP andKp ontoX. This method
can be implemented by means of a fast marching algorithm,
giving an approximation of the ZVD with time complexity
O(NM logM), whereN is the number of elements ofP ,
and M is the number of nodes of a grid that discretizes
X [14] (note thatM should be at least of orderNη, with
η > 1). Figure 3(a) illustrates the ZVD specified by the
previous exhaustive numerical method forw̄ = (−0.3, 0.2)
andρ = (0.05,−0.1) and a set of eleven Voronoi generators.

Next, we apply the approach introduced in this paper. In
particular, we first construct the standard Voronoi Diagram
of the setP , and then apply Theorem 1 to obtain the
ZVD. Note that the construction of the standard Voronoi
Diagram requiresO(N logN) time by using, for example,
Fortune’s algorithm [17]. The mapping of the standard
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(a) The ZVD and the minimum cost-to-go
interpretation.
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(b) The ZVD (black) and its corresponding standard Voronoi Diagram
(blue).

Fig. 3. The exhaustive numerical and the efficient schemes for the
construction of the Zermelo-Voronoi Diagram for a time-varying
wind velocity field.

Voronoi Diagram, which consists ofO(N) edges, to the
ZVD requiresO(N) time, giving a total time complexity
for the construction of the ZVD which is of orderN logN .
Figure 3(b) illustrates the ZVD we obtain after applying
the transformation of Theorem 1 to the standard Voronoi
Diagram.

Figure 4 illustrates the ZVD and the DZVD for the
wind velocity field w(t) = (0.5 + 0.1 sin(t/π,−0.35 −
0.1 cos(t/π)). It is interesting to note that, as the wind
becomes stronger, the Voronoi generators move closer to
the boundaries of their corresponding Dirichlet domains, a
pattern which is in accordance to the observations in [11].

VII. C ONCLUSION

In this work we have addressed a generalized Voronoi
Diagram, namely the Zermelo-Voronoi Diagram. In partic-
ular, we have dealt with the partition problem for a small
airplane traveling in the horizontal plane in the presence of
winds. Based on the interpretation of the Zermelo’s problem
as a moving target problem, we have shown that in case
of a wind velocity field that varies uniformly with time,
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Fig. 4. The Zermelo Voronoi Diagram for a time-varying wind
velocity field and a set of eleven Voronoi generators as constructed
by means of a particular homeomorphism applied to the standard
Voronoi diagram of the same set of generators.

the construction of the Zermelo-Voronoi Diagram can be
associated with a standard Voronoi Diagram by means of
a state transformation.
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