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Abstract—We consider a Dirichlet-Voronoi like partition  in the presence of a known wind velocity field (known as the
problem for a small airplane operating in the horizontal plane  Zermelo’s navigation problem [10]) with the generalizes-di

in the presence of winds that vary uniformly with time. It tance peing the minimum time from the agent configuration
is shown that the problem can be interpreted as a Dynamic

Voronoi Diagram problem, where the generators are not fixed, to the goal.destination. We henceforth refer to this_, pgniti
but rather they are moving targets to be reached in minimum  Of the configuration space as the Zermelo-Voronoi Diagram
time. The problem is solved by reducing it to a standard Voromi ~ (ZVD).

Diagram by means of a time-varying coordinate transformaton. A special case of the ZVD problem, when the wind

is constant, is treated in [11], where the solution of the
ZVD problem is associate with a standard Voronoi Diagram
by means of a coordinate transformation. The approach

The concept of “Dirichlet-Voronoi Diagram,” first intro- presented in [11] is, however, of limited scope since it is
duced by Dirichlet in 1850 [1], and subsequently generdlizebased on geometric constructive arguments that apply only
by Voronoi in 1908 [2], has found a large spectrum of0 constant wind velocity fields. In this work, we introduce
applications in different fields, including computer grapha methodology that generalizes the results of [11] under a
ics, computer vision, computational geometry, roboticd anframework that may prove powerful for dealing with similar
autonomous agents [3], [4], [5], [6], [7]. A Dirichlet-Vonoi  partition problems in the future. In particular, by adoptthe
Diagrant describes a special partition of a topological spaciiterpretation of Zermelo’s problem as a moving target prob
equipped with a generalized distance function, which asimitem [12], we reduce the ZVD problem to a Dynamic Voronoi
a specific relation between each element of the partition a¥iagram problem [8], that is, a Voronoi Diagram where the
a given discrete set of points, called tieronoi generators Voronoi generators are not necessarily fixed, but rather the
In particular, each element of the partition, known as th@re moving targets. We solve this Dynamic Voronoi Diagram
Dirichlet (or Voronoi) domainis associated uniquely with a problem by associating it with a standard Voronoi Diagram
\Voronoi generator, in such a way that a point of the space afty means of a time-varying transformation in the case of a
a Voronoi generator being both in the interior of the saméme-varying wind field. Furthermore, we introduce the Dual
domain implies that the particular Voronoi generator is théermelo-Voronoi Diagram (DZVD) problem, which leads
“closest” to this point among all other Voronoi generatord0 & partition problem similar to the ZVD problem, with
[4]. We shall refer to the partition problem of a subspacéhe difference that the generalized distance of the DZVD
of the n-dimensional Euclidean space (with respect to thgroblem is the minimum time of the Zermelo navigation
Euclidean distance) as the problem of #tandard Voronoi problemfrom a Voronoi generatoto a point in the plane.
Diagram (also known in the literature as the ordinary VoronoiSince the minimum time of the Zermelo navigation problem
Diagram) and as thgeneralized Voronoi Diagramroblem is not a symmetric function with respect to the initial and
otherwise. A detailed treatment of the Voronoi Diagranfinal configurations, the ZVD and the DZVD are not, in
problem for a plethora of “distance” functions and topoksgi general, identical.

can be found in [8], [9] and the references therein. The case of a non-stationaspatially-varyingwind field
Generalized Voronoi partition problems that are pertiiS more complex and a (semi-)analytic treatment of that
nent to autonomous agent applications, when the agengoblem is doubtful. To the authors’ knowledge, the only
dynamics are taken into account, may not be reducible gyailable result in the literature that deals with spatiall
generalized Voronoi Diagram problems, for which efficienvarying (albeit stationary) wind fields are given in [13],
construction schemes exist in the literature. In this workl4], where a purely computational/numerical solutions of
we deal with a partition problem that cannot be put unddhe problem is presented.
the umbrella of the available classes of generalized VArono The rest of the paper is organized as follows. In Section

Diagram problems. In particular, we deal with the partition| we formulate the Zermelo-Voronoi Diagram problem, and
problem for a small airplane operating in the Euclidean@lanye subsequently demonstrate that it can be interpreted as
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Il. PROBLEM FORMULATION constitutes th&ermelo-Voronoi Diagranof X. Furthermore,
L . an element?; of U is called theDirichlet domain or
The Zermelo-Voronoi Diagram problem deals with &pe vioronoi cell or the Voronoi polygonof the Zermelo-
special _partltlpn of the Eu.clldean. pla.ne with respect to Yoronoi Diagramy. Two Dirichlet domainsy; and v, are
generalized distance function, which is related to a classiparacterized as neighboring if they have a non-empty and
cal minimum-time problem named after the mathematiciaf, trivial (a single point) intersection. It follows rebd
Zermelo, who was the first to pose and solve this problef,m the formulation of Problem 2 and the basic properties of
[10]. In particular, we consider the minimum-time steeringy,o standard Voronoi Diagram that a point 9, satisfies
problem for a vehicle whose motion is described by th%(>< p:) = c(x, p;) for somej € Z, with j # 4, if ; and
o - y M) T » M7 1 1 K
following equation 20, are neighboring Dirichlet domains. Next, we show that it
X =u+ w(x,t), (1) is. possible to associate.the ZVDP vyit_h a qugmic Voronoi
Diagram problem, that is, a Voronoi-like partition problem
wherex 2 (z,y)" € R? is the position vector of a referencein the plane whe_n the Voronoi generators are moving targets,
point of the vehicle,u € R? is the control input and by means of a time-varying transformation.

w 2 (u,v)" € R? is the velocity vector field induced by I
the winds. We assume that the state space of the systerﬂ'
denoted as¥, is some connected subset®f, and the set

of admissible control inputs, denoted &s consists of all The minimum time of the ZNP does not provide us, in gen-
measurable functions that take values in the closed urit baéral, with a generalized distance function that would allmw
The Zermelo's navigation problem (ZNP) can be formulategh requce the ZVDP to a generalized Voronoi Diagram, for
as follows. the construction of which efficient computational techmisju

Problem 1 (ZNP):Given the system described by equaare available [8]. Therefore, we need to adopt an altereativ
tion (1) determine the control input* € ¢/ such that approach.

A In order to simplify our discussion we assume that
~ Jw(x,t)| < 1, which implies complete controllability of the
system (1) (see for example [16]). Thus, we will henceforth
assume tha¥ = R2. We show that it is possible to associate
Problem 2 for the case whem = w(t) with a standard
x*(0) =xo, X*(TF) = x¢. (2) Voronoi Diagram.

THE ZERMELO-VORONOIDIAGRAM INTERPRETED
AS A DYNAMIC VORONOIDIAGRAM

i) The controlu* minimizes the cost functional (u)
Tt, whereT: is the free final time.

i) The trajectoryx* : [0,7f] — X generated by the
controlu* satisfies the boundary conditions

The following proposition follows by virtue of Filippov’s  Problem 3 (ZNMTP).Given the system described by the
theorem on the existence of solutions for minimum-timequation
problems [15, p. 311-317]. A

- . _ . X = x—w(t) =u(t), X(0)=x (5)
Proposition 1: Given two pointsxg and x¢ in X, the . _
existence of a feasible path from, to x; implies the determine the control input* € ¢/ such that

existence of a minimum-time path as well. . N . N
P i) The controlu* minimizes the cost functional (u) =

The solution of Problem 1 is the contral*(0*) = T:, whereT; is the free final time.
(cos 0", sin "), where¢” satisfies the following differential i) The trajectoryX* : [0,7f] — R2 generated by the
equation [16, pp. 370-373] controlu* satisfies the boundary conditions

0" = (jup — 1) cOS 0" sin 0" + v, sin? 0 — pu,, cos® 0%, (3) Ti
e =) ' X0 =x0  X(T)=x— [ wlr)dr. @
0

Next, we formulate the Zermelo-Voronoi Diagram prob- Itis clear that Problems 1 and 3 are equivalent, in the sense
lem (ZVDP). that a solution of Problem 1 is also a solution of Problem

3, and vice versa. Furthermore, an optimal trajectétyof

Problem 2 (ZVDP):Given the system described by equaproblem 3 is related to an optimal trajecto'yof Problem 1
tion (1), a collection of goal destination £ {pi € X:i€ by means of the time-varying transformation

T}, whereZ is a finite index set, and a transition cost

where g, py, vz, v, denote partial derivatives.

t
X*(t) = x*(t) — / w(T)dr. (7)
A
C(X07 pl) = Tf(XOa pi)a (4) 0
determine a partitiolJ = {0, : i € Z} of X such that By virtue of (3), forw = w(¢t) the optimal control of
. Problem 1 is given by.* = (cos 6*,sin 6*) (x coordinates)
) X =Uez Ui

wheref* is a constant. Furthermore, equation (5) implies that
the same contral* is also the optimal control for the moving
target Problem 3 X coordinates). The application of a
The set of goal destinatiorf? is known in the literature as constant input to the system described by (5) implies that th
the set ofVoronoi generatorer sites whereas the partitio®  optimal path inX-coordinates is a straight line segment, and

i) U, =,;, for eachi € 7.
i) for eachx € int(%Y;), c(x, p;) < c(x, p;) for j # 1.



distance function is the Euclidean distance between thialini
configuration of the agent and the location of the moving
targetP; at a specific instant of time, namel§;(xo, p;), that

is, the minimum time of the ZNP from, to p; = P;(0).
Figure 2 demonstrates the interpretation of the ZVDP as a
Dynamic Voronoi Diagram problem. In particular, the target
set, which at timg = 0 is the set of the Voronoi generators
P = {p;,i € Z} of the ZVDP, moves uniformly with time
along the integral curves of the velocity fielehw.

As we have shown previously, the system (5) wiift)) =
Xo reaches a poinXs (not prescribed a priori) in minimum
time Ty = |Xo — X¢|. Thus, by reversing time in (7), the
system (1) starting at poing, at ¢ = 0 reaches the paint
x¢ = X¢ in minimum timeT; = | X — X¢|, provided that

Fig. 1. Time-optimal control strategy for the ZNMTP.
d(Xo,Xr)
xy = Xo — / w(r) dr, (10)
0

thus the minimum time (invariant under the transformation A

(7)) is the length of that line segment (since the pursuevhered(Xo, X¢) = [Xo — X¢|.

tmhgvliig'\tltlwthofct?wnesﬁgth)u n'll'thZpgsgrggfcgwt?o?fstrrg?ggc fi?‘:ﬁ"s For each Voronoi generatpr equation (10) induces a state
. i . P2 2

ZNMTP is depicted in Fig. 1 (constant bearing angle pursu?transformanon p i K% = R, where

strategy). In particular, the pursuer (denoted as a blatk do A d(X.p)

and the moving target (denoted as green dot) start at time foX) =X _/0 w(r)dr (11)

t = 0 from xo and x¢ respectively. Since the angl# is

necessarily constant , the pursuer is constrained to travelThe following proposition will prove useful for the fol-

along a line segment that passes through the peintith  lowing discussion.

constant unit speed, whereas the target r?oves along the time

parame_t.enzed. curve given layi) = s . Jo w.(T) dr. From (11) is an injective mapping with non-singular Jacobian for

Proposition 1 it follows that there exists a tirfie> 0 such all X e R2, provided thafw(t)| < 1 for all £ > 0

that X(T') = £(T'). The optimal value ob* corresponds to T . ST _

the leastT’, denoted asl}, such thatX(T;) = &(T¢). It is Proof: First we show thatf, is an injective mapping.

easy to show that the minimum tin# is the least positive L&t X1 andX, be such thaff,(X:) = f,(X2), equivalently,

root of the following integral-algebraic equation

Proposition 2: Given p € R?, the state transformation in

d(X1,p)
Xo — X1 = / w(r) dr. (12)
d(Xz2,p)

By hypothesidw(t)| < 1, and thus (12) gives
* 3 i * T
wheread* is given by9 = Arg ((Xf — X0 — fO f w(T) dT) |x2 _ x1| < |d(x17 P) _ d(XQ, P)| (13)

The idea of reducing the ZNP to a moving target proble L Lo :
in the Euclidean plane with no winds (ZNMTP), can also b%l%&rgﬁt;mf;ﬁeo; Jgofgig%W;f r?gé'ﬁ'g;'gglt tgf the triangle
applied to the ZVDP. In particular, the ZVDP can be formu- ' P

lated as a Dynamic Voronoi Diagram Problem (DVDP). Dfo(X) = I —w(d(X,p))(X — p)T/d(X, p). (14)

Problem 4 (DVDP):Given the system described by €qUayt can be easily shown that the nonzero eigenvalue of the

. . . A
tions (tl), a collection of moving targe®? = {P; : P;(t) =  rank one matrixw(d(X, p))(X — p)"/d(X, p) is given by
pi — fo w(r)dr, i € T}, whereZ andp; as in Problem 2,

T
T = |x¢ — xo — /0 w(T)dr], (8)

and a transition cost A2(X) = w'(d(X,p))(X = p)/d(X,p) < |w(d(X,p))| < 1.
(0, P;) A Ixo — Pi(Tr(xo, pi))]. 9) Thus0 ¢ spec(Dfp()é)) and the Jacobia® f,(X) is non-
singular for allX € R. ]
. g d _ d o
determine a partitio’® = {V;* : i € T} of X such that The following two propositions follow readily from the
) X =Uer V% previous discussion.
ii) W = V4, for eachi € 7. Proposition 3: The coordinates of every element of the

iii) for eachx € int(V,?), c?(x,P;) < c¢?(x,P;) for j #4.  setP are invariant under the state transformation (11), that

Problem 4 deals with the characterization of the sets & fo(P) =p forall p € P.
initial conditions from which the agent will intercept the Proposition 4: Given p € R2, then c¢(x,p) = |X — p|
moving target setP? in minimum time. The generalized provided thatx = f,(X).
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Vi) p1 € int(F(Hi(p1,p2))) and po €
int(F(Hz(p1,p2)))-

vii) For all x € int(F(Hi(p1,p2))), c(x,p1) < (X, p2).
Similarly, for all x € int(F(Hz(p1,p2))), c(x,p2) <
c(x, p1).
viii) The bisector ofp; and p, with respect to the cost
satisfies
7(p1,p2) = {x € R : x = F(X), X € x(p1,p2)}-
Proof:

i) First, we show thatF is well defined forX e
Hi(p1,p2) N Ha(p1,p2) = x(p1,p2). In particular,

Fig. 2. The Zermelo-Voronoi Diagram can be interpreted as a for X € x(p1,p2), we have that(X,p1) = d(X, pz2),

Dynamic Voronoi Diagram.

IV. CONSTRUCTION OF THEZERMELO-VORONOI
DIAGRAM

which implies thatf,, (X) = f5,(X). The continuity
of F follows readily. Furthermore, the Jacobian Bf
is well defined and invertible (see Proposition 2) for
all X € R*\x(p1, p2), and it is given by ??) for X in
Hq(p1,p2) and Ha(p1, p2), respectively.

ii) It follows immediately from the continuity of".

In this section, we demonstrate the steps for the construcjj) First, notice that the restriction of on H (p1, ps), is

tion of the ZVD. In particular, we show that the state transfo

fo, Which is an injective, continuously differentiable

mation (11) reduces the ZVD to a standard Voronoi Diagram  map with non-singular Jacobian (Proposition 2). It fol-
for the case of two Voronoi generators. Subsequently, we  |gws that f,, is a diffeomorphism fromi (p;, p2) to

generalize the previous result to the case of arbitraryefinit

sets of Voronoi generators.

Let us first consider two distinct pointg; andpo, in the
Euclidean plane. The bisector ¢f and ps is the straight
line x(p1,p2) defined by

A
xX(p1,p2) = {X € R?: [X = p1| = [X — paf}
={X€eR*: (p2 — p1)' X = (]p2|* — Ip1]?)/2} -

Correspondingly, the bisector @f, and p, with respect to
the cost (4) is the curve(py, p2) defined by

~(p1, p2) 2 {x € R%: ¢(x,p1) = c(x, pa2)}. (15)

The bisectory(py, p2) dividesRR? into the two half-planes
Hl(pl,pg) = {X e R? . |X — p1| < |X — p2|} and
Hs(p1,p2) = {X€R?: [X —p1| > [X —paf}.

Proposition 5: Given p;, p2 € R?, and a wind velocity-
field w with |w(t)] < 1 for all ¢ > 0, let the functionF’ :
R? — R? be defined by

A ) fou(X), X € Hi(p1,p2),
)= {fm (X), X € Ha(pr,pa). (16)

Then the following statements are true.

i) The mapF is continuous for alX € R? and continu-
ously differentiable for alX ¢ x(p1, p2).

i) The setsF(Hy(p1,p2)) and F(Hz(p1,p2)) are con-
nected.

i) The sets F(Hi(p1,p2)) and F(Hx(pi,p2)) are
closed, andaF(Hl(pl,pg)) = 8F(H2(p1,p2)) =
F(x(p1,p2)).

iv) int(F(Hi(p1,p2))) N int(F(Hz(p1,p2))) = @ and
F(Hi(p1,p2)) N F(Hz(p1,p2)) = F(x(p1,p2)).

v) The mapF is a homeomorphism.

F(Hi(p1,p2)) = fo,(H1(p1,p2)) and F'(H1(p1,p2))
is closed sinceH;(p1,p2)) is closed. Furthermore,
OF (H1(p1,p2)) = F(0H1(p1,p2)) = F(x(p1,p2)).
The proof for F(Ha(p1, p2)) is similar.

iv) Assume, on the contrary, that there exisis €
int(F(Hl(pl, pg))) n int(F(HQ(pl, pg))) It follows
from iii) that there are pointX; € int(H;(p1,p2)) and
Xy € int(Hg(pl, pg)) with F(Xl) = F(XQ) =Y. Thus
S(F(X1),p1) = c(F(X2),p1) and e(F(X),p2) =
¢(F(X3), p2), which imply, using Proposition 4, that
X1 =p1] = [X2—p1| = d1 and|X; —pz| = [Xo —p2| =
02 respectively, for some positive constaatsandd,.
Thus X; and X, lie necessarily at the intersection of
two circles centered at; and have radid;, i € {1, 2},
respectively. This intersection is non-empty if one of
the following conditions hold true: a); < Jo with
|p1 — p2| < 81+ 82, which implies that botPX; andX,
are inHl(pl, pg), b) 01 > 09 with |p1 —p2| < 61+ 0a,
which implies that bothX; and X, are in H1(p1, p2)
and finally, c)§; = dy with |py — p2| < 61 + da,
which implies that bothX; and X, are in x(p1, p2).
All previous cases contradict the assumption Kat
int(H1(p1, p2)) andXy € int(Ha(p1, p2)). The second
part of the statement follows readily.

v) First, we show thatF' is injective. First, notice
that, by definition,F is injective on H;(p1, p2) and
Hg(pl,pg). Let now X; € int(Hl(pl, pg)) and X, €
int(Hs2(p1,p2)) and assume, on the contrary, that
F(Xl) = F(XQ) But F(Xl) € F(int(Hl(pl, pg))) -
int(F(H1(p1,p2))) since the restriction ofF’ on
Hiy(p1,p2) is an open map. Similarly,F(Xs) €
F(int(Hz(p1,p2))) € int(F(Hz(p1,p2))). Hence
F(Xl) = F(Xg) |mp||es thatint(F(Hl(pl,pg))) N
int(F(H2(p1,p2))) # @, which contradicts iv). Since
F is injective it follows readily that its inversé —!



Vi)

exists and it is defined by

F_l(X) é fp_l(x)7 X € F(Hl(p17p2))a
[t (%), x € F(Hzx(p1,p2)),

with f' and f,.! continuous onH;(pi,p2) and
Hy(p1, p2), respectively. It suffices to show that* is
well defined forx € F(H;(p1, p2))NF(Hz(p1,p2)) =
F(x(p1,p2))- To this end, notice that the statemerd
F(x(p1,p2)) implies that there existX € x(p1,p2)
such thatx F(X). But X € x(p1,p2) implies
that [X — p1| = |[X — pz2| and hencex = f,,(X)
fp2(X). It follows that f; *(x) = f,,!(x) for all x €
F(x(p1,p2))-

Since p1 € int(Hi(p1,p2)) [p2 € int(Ha(p1,p2))]
and the restriction of I on int(Hq(p1,p2))
[int(H2(p1,p2))] yields an open map, it follows
that p; F(p1) € F(int(Hi(p1,p2))) C

than any other agent with j # i. We call this problem the
Dual Zermelo-Voronoi Diagram Problem (DZVDP).

The distance function for the DZVDP is defined by

&(pixe) 2 Tr(pi xr), (18)

that is, the minimum time for the Zermelo navigation prob-
lem from a Voronoi generatop; to the agent’s terminal
configurationxs. The generalized distance function for the
DzVDP can be reduced to the distance function for the
ZVDP by reversing the order of the function arguments. The
construction of the DZVD is thus similar to the solution of
the ZVD.

Corollary 1: LetV 2 {Vi,i € T} be the standard Voronoi

partition for the set of Voronoi generatof%é {pi,i € I}.
Assume thafw(t)| < 1 for all ¢ > 0, and let the function
F : R? — R? be defined by

int(F'(H1(p1,p2))) [p2 € int(F(Ha(p1, p2))]-

vii) Let us assume, on the contrary, that there exists
int(F(Hi(p1,p2))) such thate(x,p1) > ¢(x, p2). Let
X € Hy(p1, p2) suchx = F(X). Note that iii) implies
thatX € int(H;(p1, p2)). It follows from Proposition 4
that | X — p1| > |X — p2|, contradicting the fact that
Xe int(Hl(pl, pg)).

viii) The proof follows from iii), vii) and Proposition 4.

FX)2 . (X),  XeVi,iel, (19)
v JAN d(X,pi) . .
where f,, (X) = X + [; w(r)dr, i € Z. The solution

of the DZVDP is the image of/ under the mappind.

VI. SIMULATION RESULTS

In this section we provide numerical simulations to
B demonstrate the previous developments. To this end, let us

So far we have solved the ZVDP for the case of twéonsider the wind velocity field defined by
Voronoi generators and of a wind velocity field that varies _ L 0<t<E
uniformly with time. We are now ready to state the main wity= JwTrL Ustst, (20)

W+ pt, t>1,

theorem of this paper.

Theorem 1:Let V £ {Vi,i € T} be the standard Voronoi wherew = (u,v)" € R? with |w| < 1, p € R? constants,

Assume thatw(t)| < 1 for all ¢ > 0, and let the function Diagram by gridding the entire space and propagating the
F:R2 — R? be defined by isocost fronts of the respective min-time problems emagati

from each generator and we compare the results with the
F = fp,(X), proposed approach in terms of computational efficiency. In
wheref,, (X) = X—fo‘i(x"‘”) w(7)dr, fori € Z. The solution

particular, given a \Voronoi generatgr € P, we define
of the ZVDP is the image ot/ under the mapping.

the minimum cost-to-go fronx to p to be the function
- ] CKp(x) 2 c(x,p). Next, we define the minimum cost-to-go

Proof: The Dirichlet domairV; of the standard Voronoi
partition V' is determined byV; = (1, Hi(pi,p;) [4]-

to the setP as Kp(x) = minyep c(x,p). Each Dirichlet
i 12i\Pi; P, domain of the ZVD can be determined by projecting the

Thus, F(Vi) = F([;4 Hi(pi;p;)), which implies, by intersection of the surfacdsp and K, onto X. This method
virtue of F being injective (Proposition 5v)), thaf(Vi) =  can be implemented by means of a fast marching algorithm,

ﬂjéi F(Hi(pi, p;))- The proof can be carried out similarly gjving an approximation of the ZVD with time complexity

to Proposition 5 using induction. B O(NMlog M), whereN is the number of elements a?,
and M is the number of nodes of a grid that discretizes

V. THE DUAL ZERMELO-VORONOIDIAGRAM X [14] (note thatM should be at least of orde¥”, with

In this Section, driven by the observation that thé! >_1)' Figure 3(a) iIIusteres the ZVDﬁ specified by the
minimum-time “distance” function is in general non-Previous exhaustive numerical method for= (—0.3,0.2)

symmetric, that is, the minimum time to drive the systen?ndp = (0.05,-0.1) and a set of eleven Voronoi generators.

(1) from a pointA to B, and vice versa, are not necessarily Next, we apply the approach introduced in this paper. In
equal, we formulate a variation of the ZVDP. In particularparticular, we first construct the standard Voronoi Diagram
given a set ofr agents starting from given initial positions, of the set P, and then apply Theorem 1 to obtain the
we want to characterize the set of terminal positions fohea&VD. Note that the construction of the standard Voronoi
agenti € {1,...,n}, denoted asJ;, such that every point Diagram requiregD(N log N) time by using, for example,

in the interior ofY; can be reached by the agenfaster Fortune’s algorithm [17]. The mapping of the standard

XeV;, i el a7)



(@) The ZVD and the minimum cost-to-go
interpretation.

Fig. 4.
velocity field and a set of eleven Voronoi generators as cocistd

by means of a particular homeomorphism applied to the stdnda
3 Voronoi diagram of the same set of generators.

The Zermelo Voronoi Diagram for a time-varying wind

the construction of the Zermelo-Voronoi Diagram can be

(1]

(2]

[3]
(b) The ZVD (black) and its corresponding standard Voron@dbam
(blue).
[4]
Fig. 3. The exhaustive numerical and the efficient schemes for the
construction of the Zermelo-Voronoi Diagram for a timeyag

ind velocity field.
wind velocity fie [6]

Voronoi Diagram, which consists of(N) edges, to the []
ZVD requiresO(N) time, giving a total time complexity
for the construction of the ZVD which is of ordé¥ log N.
Figure 3(b) illustrates the ZVD we obtain after applying
the transformation of Theorem 1 to the standard Voronoig,

Diagram.

Figure 4 illustrates the ZVD and the DZVD for the[10]
wind velocity field w(t) (0.5 + 0.1sin(t/m, —0.35 —
0.1cos(t/m)). It is interesting to note that, as the Wind[11
becomes stronger, the Voronoi generators move closer to
the boundaries of their corresponding Dirichlet domains, &2l
pattern which is in accordance to the observations in [11].[13]

(8]

VIl. CONCLUSION (14]
In this work we have addressed a generalized Voronoi
Diagram, namely the Zermelo-Voronoi Diagram. In particqis

ular, we have dealt with the partition problem for a small
airplane traveling in the horizontal plane in the presernice 6161
winds. Based on the interpretation of the Zermelo’s problem
as a moving target problem, we have shown that in case]
of a wind velocity field that varies uniformly with time,

associated with a standard Voronoi Diagram by means of
a state transformation.
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