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Abstract— We consider a combination of the classical
Markov-Dubins problem and Zermelo’s navigation problem. In
particular, we consider the problem of characterizing minimum-
time paths with prescribed positions and tangents for a ve-
hicle with Dubins-type kinematics in the presence of strong
winds/currents. By utilizing optimal control theory, we charac-
terize the structure of the optimal paths and subsequently solve
the time-optimal synthesis problem.

I. INTRODUCTION

In this work, we consider the time-optimal synthesis for an
aerial/marine vehicle with Dubins-type kinematics operating
in the presence of strong winds/currents. Our problem is
essentially a combination of two well-known problems, one
posted by A. A. Markov in 1887 and the other by E. Zermelo
in 1931. Zermelo’s navigation problem [1] deals with the
characterization of optimal paths for a small ship traversing a
river in the presence of currents. Zermelo solved this problem
for the general case of a both temporally and spatially vary-
ing velocity current field using “an extraordinary ingenious
method” according to Caratheodory [2]. Markov’s problem
was solved by Dubins by means of a number of constructive,
geometric arguments [3]. We shall refer to it as the Markov-
Dubins problem (MD) as suggested by Sussmann [4]. Reeds
and Shepp solved a generalization of the MD problem when
the path may contain cusps [5] (RS problem). Both the
MD and the RS problems can be interpreted as minimum-
time control problems. In particular, the MD (RS) problem
is equivalent to the minimum-time problem for a vehicle
that travels only forward (both forward and backward) with
constant speed and, furthermore, the minimum allowable
turning radius of the vehicle is bounded a priori. Sussmann
and Tang [6] and Boissonnat et al [7] solved the MD and RS
problems using the Maximum Principle of Pontryagin along
with geometric control ideas, and provided more general and
rigorous proofs, refining the original results of [3] and [5].

The optimal control formulation of the MD problem
allowed McGee and Hedrick [8], [9] to characterize the
solution of the Zermelo-Markov-Dubins problem (ZMD) for
the case of constant winds. After interpreting the problem as
a moving target problem (an idea that goes back to Kelley’s
interpretation of the Zermelo’s problem [10]), they deter-
mined that the family of paths that solves the MD problem
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is not sufficient to solve the ZMD problem. Another solution
to the ZMD based on numerical optimization techniques
when the wind velocity field varies uniformily with time is
presented in McNeely et al [11].

While the characterization of the structure of the optimal
paths for the ZMD problem was developed in [8] and [9],
a fundamental problem that still remains unresolved is that
of the time-optimal synthesis. The solution of the synthesis
problem consists of the following tasks: 1) characterize a
family of extremals that is sufficiently large to solve the ZMD
for arbitrary boundary conditions, 2) determine the reachable
set that corresponds to each extremal of this family, and
3) provide a state-feedback minimum-time control scheme,
that is, partition the state space such that each subset in the
partition corresponds to a set of boundary conditions that
can be interconnected in minimum time by a means of a
specific control strategy. For the complete characterization of
the control strategy that solves an arbitrary steering problem,
besides the construction of the state-space partition, one
needs to specify the switching points (in time and/or space)
where the path concatenations (control switches) take place.
In this work, we call the characterization of the switching
times as the inverse problem. The synthesis problem for the
MD has been solved by Bui et al [12], [13], while the same
problem for the RS was addressed by Souères and Laumond
in [14]. The inverse problem for the RS and the MD has been
addressed in [15] and [16]. Both the synthesis and the inverse
problems for the ZMD problem have never been addressed in
the literature, as far as the authors know, and their detailed
analysis and presentation is the main contribution of this
paper. We demonstrate that the solution of both the inverse
and the synthesis problems exhibit characteristics that are
not present neither in the standard MD nor the Zermelo’s
problems.

The rest of the paper is organized as follows. In Section II
we present the kinematic model, we examine its control-
lability, and we formulate the ZMD as an optimal control
problem. In Section III we establish the existence of solutions
for the ZMD problem. In Section IV we present the family
of extremals of the problem that is sufficient for optimality
based on PMP analysis. In Section V we carry out a detailed
reachability analysis and subsequently we solve the time-
optimal synthesis problem in Section VI. Finally, Section VII
provides concluding remarks.



II. KINEMATIC MODEL AND PROBLEM FORMULATION

Adopting to the approach of [6] and [7] we cast the ZMD
as a minimum-time problem for a vehicle whose motion is
described by the following set of equations

ẋ = cos θ + wx, ẏ = sin θ + wy, θ̇ = u/ρ, (1)

where x, y are the cartesian coordinates of a reference point
of the vehicle, θ is the vehicle’s heading, u is the control

input, w
�
= (wx, wy) is the velocity field induced by the

winds/currents, and ρ is the minimum turning radius. In this
work, we assume that the field w is constant.

We assume that (x, y, θ) ∈ M �
= R2 × S1. Furthermore,

we assume that the set of admissible control inputs is given

by U �
=

{
u ∈ F[0,T ] : u(t) ∈ U, for all t ∈ [0, T ]

}
, where

F[0,T ] is the set of all measurable functions on [0, T ] and
U = [−1, 1] is the corresponding input value set.

In the absence of winds/currents the system described
by (1), known as the Dubins vehicle, with input value
set U is completely controllable [6]. In the presence of a
nonzero wind/current velocity field w = (wx, wy), however,
controllability is not ensured. For example, if the magnitude
of the wind speed w is greater than one (the magnitude of
the normalized forward velocity (cos θ, sin θ) of the vehicle),
then the set of unreachable configurations will be non-
empty. Next, we investigate the controllability of the system
described by (1) for the case of a constant wind velocity
field.

A. Controllability for the Case of Constant Wind

First, we show that a necessary and sufficient condition
for the system (1) to be completely controllable is that the

magnitude of w, ν
�
= ‖(wx, wy)‖2 is less than one. For our

analysis, we assume that the vehicle starts from point O, with
zero heading and final configuration corresponding to a point
B and heading θf as shown in Fig. 1(a). The wind velocity
is constant and equal to ν�ew, where �ew is the unit vector
that determines the direction of the wind velocity vector.
Alternatively, we can interpret the steering problem from O
with θ = 0 to B with θ = θf (fixed end point, free final
time) as a moving-target problem as suggested in [10]. In
particular, equations (1) can be written as

χ̇ = cos θ, ζ̇ = sin θ, ϑ̇ = u/ρ, (2)

where χ
�
= x − wxt, ζ

�
= y − wyt, ϑ

�
= θ.

The system described by (1) reaches B with θf at some
time T > 0 if and only if the system (2), that is, the standard
Dubins vehicle in the absence of winds, intercepts at angle
θf and at time T a particle that moves along the half-line
ε = {�p ∈ R2 : �p = �r − νt�ew, t ≥ 0} with constant speed
ν. Let us denote with �R(t) and �p(t) the position vectors at
time t of the Dubins vehicle and the particle respectively. It
follows that the controllability of the system described by
(1) is equivalent to the existence of a time T > 0 such that

�R(T ) =�r − νT�ew, (3)

where �R(T ) =
−→
OC and r =

−→
OB as shown in Fig. 1(a). Next,

we show that ν < 1 is a necessary and sufficient condition
for the complete controllability of the system.

To show necessity it suffices to observe that if ν ≥ 1,
the particle (target) travels along ε with speed greater than
or equal to the speed of the Dubins vehicle (pursuer) and
therefore, there would be boundary configurations for which
no intercept can take place.

Conversely, if ν < 1 the Dubins vehicle travels faster
than the particle. Furthermore, since the Dubins vehicle is
completely controllable, there is some time t1 > 0 such that

the vehicle intercepts ε with heading −φw, where φw
�
=

Arg(�ew). Henceforth, we allow both the Dubins vehicle and
the particle to move along ε. At some sufficiently large
time t2, the Dubins vehicle will reach some point �R(t2),
sufficiently ahead of the particle, say, a distance d. Then we

consider the steering problem from �R(t2), with
−→
OC

�
= �R(t2),

with heading −φw to the same point C but with heading
θf . If Td is the minimum time for this steering problem,
then the Dubins vehicle will intercept the particle at point

�p(T ) = �R(t2) = �R(T ) with heading θf at time T
�
= t2 + Td

when d = νTd. Note that Td depends only on −φw and θf .
The situation is depicted in Fig. 1(b).

The following proposition follows readily from the previ-
ous discussion.

Proposition 1: For constant wind field (wx, wy), the sys-
tem (1) is completely controllable if and only if ν < 1.

Next we briefly discuss the construction of the reachable
set for system (1) in the case ν ≥ 1. In particular, we
adopt an approach similar to Caratheodory’s treatment of
the controllability of the Zermelo’s problem. The vehicle
initially at O with θ = θ0 can move only along the direction−→
OA, where

−→
OA is the inertial velocity of the vehicle given by−→

OA =
−→
OP+

−→
PA, where

−→
OP = ν�ew and

−→
PA = (cos θ0, sin θ0).

As shown in Fig. 2(a), after some sufficiently small time
δt the vehicle driven by some constant control u ∈ [−1, 1]
reaches a point O′ with heading θ = θ0 + u/ρδt. It follows
from Fig. 2(a) that at time t = δt the vehicle is constrained to
move along a direction that lies within the cone with vertex
O′ and angle ̂A+O′A−, where P′A± = (cos θ±, sin θ±) and
θ± = θ0 ± δt/ρ.

In the standard Zermelo’s problem, as shown in Fig. 2(b),
the vehicle’s inertial velocity

−−→
OKi =

−→
OP +

−−→
PKi, i ∈

{1, . . . , 4}, where
−→
OP = ν�ew and

−−→
PKi is the vehicle’s

forward velocity, is constrained to lie within the cone with
vertex O and angle K̂1OK4 for all θ ∈ S1 and for all t ≥ 0
(for more details see [2]). The reachable set for the Zermelo
problem RZ(0, 0) and the set of all points (xf , yf) that can
be reached from (0, 0, 0) with free final heading θf for the
ZMD problem, denoted as RZMD(0, 0, 0), are given in Fig.3.

B. Minimum-Time Problem Formulation

To this end, we formulate the following minimum-time
problem with fixed initial and terminal conditions.
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Fig. 1. The system (1) is completely controllable if and only if
ν < 1.

Problem 1 (ZMD): Given the system described by equa-
tions (1) determine the control input u∗ ∈ U such that

1) The control u∗ minimizes the cost functional J(u)
�
=

Tf , where Tf is the free final time.
2) The trajectory x∗ : [0, Tf ] �→ M generated by the

control u∗ satisfies the boundary conditions

x∗(0) = (0, 0, 0), x∗(Tf) = (xf , yf , θf), (4)

III. EXISTENCE OF OPTIMAL SOLUTIONS

To show existence of an optimal solution to Problem 1 we
apply Filippov’s general theorem on minimum-time prob-
lems with prescribed initial and terminal states [17], [18].
In particular, the right hand side of (1) defines a vector
field f(x, u), which is continuous in u and continuously
differentiable in x, and the input value set U = [−1, 1] is
convex and compact. Furthermore, since the vector field is
affine in the control, and the input value set U = [−1, 1]
is convex, it follows that given any t ≥ 0 and x ∈ M the
image set of the vector field defined by the right hand sides
of (1) is convex for all u ∈ U . It follows by virtue of the
triangle and Cauchy-Schwartz inequalities that

|〈x, f(x, u)〉| ≤ (1 + ν)‖(x, y)‖ + |θ|/ρ. (5)

O′

O

P

P

t = 0
t = δt

A

A+

A−

�V+

�V−�V

(a) Reachability analysis for the ZMD problem
when ν ≥ 1.

O

P

K4

K1

K3

K2

(b) Reachability analysis for the Zermelo’s
problem when ν ≥ 1.

Fig. 2. Reachability analysis for the ZMD and the standard
Zermelo’s problems when ν ≥ 1.

Furthermore, by using the inequality 2‖x‖ ≤ 1 + ‖x‖2 and
the fact ‖(x, y)‖ + |θ| ≤ √

2‖x‖ it follows

|〈x, f(x, u)〉| ≤ c
(
1 + ‖x‖2

)
, c =

√
2max{1 + ν,

1
ρ
}. (6)

Thus, all conditions of Filippov’s theorem are satisfied and
therefore we have the following two propositions.

Proposition 2: Given two arbitrary configurations x0 and
xf in M, existence of a feasible path from x0 to xf implies
the existence of a minimum-time path as well.

Corollary 1: The minimum-time Problem 1 for ν < 1
always has a solution.

IV. OPTIMAL CONTROL ANALYSIS

In order to characterize the extremals of Problem 1 we
carry out a standard optimal control analysis based on PMP
arguments [19]. To this end, consider the Hamiltonian H :
M× R3 × U �→ R of Problem 1 as follows

H(x, p, u) = p0 + p1 cos θ + p2 sin θ + p3u/ρ, (7)

where p0 is some scalar and p : [0, Tf ] �→ R3. From PMP it
follows that if x∗ is a time-optimal trajectory generated by
the control u∗ ∈ U , then there exists a scalar p∗0 ∈ {0, 1}
and an absolutely continuous function p∗ : [0, Tf ] �→ R3,
where p∗ = (p∗1, p

∗
2, p

∗
3), known as the costate, such that

1) ‖p∗(t)‖ + |p∗0| never vanishes,
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Fig. 3. Reachable sets for the ZMD and the standard Zermelo’s
problems when ν ≥ 1. Note that RZMD(0, 0, 0) ⊂ RZ(0, 0).

2) p∗(t) satisfies, for almost all t ∈ [0, Tf ], the canonical
equation ṗ∗ = −∂H(x∗, p∗, u∗)/∂x or, equivalently,

ṗ∗1 = 0, ṗ∗2 = 0, ṗ∗3 = p∗1 sin θ∗ − p∗2 cos θ∗, (8)

3) p(Tf) satisfies the transversality condition associated
with the free final-time Problem 1

H(x∗(Tf), p∗(Tf), u∗(Tf)) = 0. (9)

Because the Hamiltonian does not depend explicitly on time,
it follows from (9) that H(x∗(t), p∗(t), u∗(t)) = 0, for almost
all t ∈ [0, Tf ].

Furthermore, the optimal control u∗ necessarily minimizes
the Hamiltonian evaluated along the optimal trajectory x∗ and
the corresponding costate vector p∗. Thus,

H(x∗, p∗, u∗) = min
v∈[−1,1]

H(x∗, p∗, v), a.e. t ∈ [0, Tf ]. (10)

It follows from (10) that u∗ = −sgn(p∗3) when p∗3 �= 0
and u∗ ∈ [−1, 1] otherwise. Thus, a solution-trajectory for
Problem 1 corresponds necessarily to either a regular bang-
path (concatenations of bang arcs) or a composite path that
is a concatenation of bang and singular arcs. We denote a
bang and a singular arc as Cτ and Sτ , respectively, where
τ denotes the time of motion along each arc. Next, we state
without proof Theorem 1, which deals with the structure of
minimum-time paths of Problem 1. Elements of the proof of
Theorem 1 can be found in [9]. Due to space limitations, a
complete treatment on the characterization of the minimum-
time paths for Problem 1 will not be presented in this work.

Theorem 1: Any optimal solution to Problem 1 corre-
sponds necessarily to paths of the form

1) CαCβCγ , with α ∈ [0, 2πρ) and β ∈ [0, πρ),
2) CαCβCγ , with α ∈ [0, 2πρ) and β ∈ [π, 2πρ),
3) CαSβCγ , with α ∈ [0, 2πρ) and β ∈ [0,∞),

where γ = Tf − α − β.

Note that the first type of paths does not correspond to
optimal paths for the standard MD problem. Furthermore,
since a bang arc corresponds to either u = +1 or u = −1,

the path types of Theorem 1 define a family of eight paths,
denoted as T, that depends on two parameters, namely α
and β. Since for the system (1) the trajectory determines the
control, we can associate uniquely to each element of the
family T a family of eight control sequences U composed of
piecewise constant control laws with at most two switches.

From this point on, we shall denote bang arcs that corre-
spond to u∗ = +1 and u∗ = −1 as L and R respectively. If
the bang arc is the second arc of a CαCβCγ with β ∈ [0, πρ)
we shall write lβ and rβ for u∗ = +1 and u∗ = −1
respectively.

V. REACHABILITY ANALYSIS AND THE INVERSE

PROBLEM

In this section we carry out the reachability analysis
for the system (1). In light of Propositions 1 and 3, we
henceforth assume that ν < 1. Using an approach similar
to the one in Bui et al [12], we first construct the reachable
set for each extremal control sequence uk ∈ U∗, where

k ∈ T
�
= {LSL, LSR, LRL, LrL,RSR,RSL,RLR,RlR}. In

particular, for each uk ∈ U∗, and given the total time of
motion tk ∈ [0,∞), we integrate equations (1) from t = 0
to t = tk with (x(0), y(0), θ(0)) = (0, 0, 0); we denote
the corresponding solution as ϕk : [0,∞) �→ M, where
ϕk(t) = (xk(t), yk(t), θk(t)). By virtue of Proposition 1,
for each k ∈ T the solution ϕk depends on two parameters,
namely α̂ and β̂. In particular, α̂ equals the change of vehicle
heading α/ρ along the first bang arc; we write α(α̂) = α̂ρ.
Furthermore, β̂ is either the change of vehicle heading β/ρ
along the second bang arc for a CαCβCγ path or the time
β for which the control is zero for a CαSβCγ path; we
write β(β̂) = {β̂ρ, β̂} for a CαCβCγ and a CαSβCγ path
respectively. Note that given the total time tk, the time of
motion along the third segment γ is uniquely defined by
γ = tk − α(α̂) − β(β̂), with tk ≥ α + β, for all types
of admissible paths. Using Propositions 1, we can readily
obtain for each k the intervals Ik

α̂ and Ik
β̂

on which the

parameters α̂ and β̂ belong to. The Cartesian product of

Ik
α̂ and Ik

β̂
determines the parameter space Pk

�
= {(α̂, β̂) :

α̂ ∈ Ik
α̂, β̂ ∈ Ik

β̂
} of the problem. Let Pθ be the set of all

configurations (x, y, θ) ∈ M with θ = θf . We define the
projection Πθ : M �→ Pθ as

Πθ

(
(xk, yk, θk)

) �
=

{
(xk, yk), if θk = θ,

∅, otherwise.
(11)

The reachable sets Rk,θ ⊆ Pθ for the control sequence
uk ∈ U∗ is thus given by

Rk,θ
�
=

⋃
(α̂,β̂)∈Pk

tk≥α(α̂)+β(β̂)

Πθ

(
ϕk(tk; α̂, β̂)

)
. (12)

Finally, we denote as PLSL,θ the parameter space that
corresponds to the reachable set RLSL,θ.
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A. LαSβLγ Paths

In order to construct the reachable set that corresponds to
LαSβLγ paths, we determine the coordinates (xf , yf) of all
positions in the Pθ plane that can be reached from (0, 0, 0).
After integrating equations (1) from t = 0 to t = α with
u = +1, from t = α to t = α + β with u = 0 and from
t = α + β to t = Tf with u = +1, it follows that

xf = ρ sin θ + β̂ cos α̂ + wxTf , (13)

yf = ρ(1 − cos θ) + β̂ sin α̂ + wyTf , (14)

where Tf = ρ(α̂ + γ̂) + β̂, γ̂ = (θ − α̂) mod 2π. Taking
the union of (xf , yf) for all α̂ ∈ [0, 2π) and β̂ ∈ [0,∞) we
construct the reachable set RLSL,θ. The reachable set RLSL,θ

along with the contours of the cost function (minimum time
Tf ) are depicted in Fig. 4(a).

Conversely, given a point (xf , yf) ∈ RLSL,θ we can
determine (α̂, β̂) ∈ PLSL,θ (inverse problem). In particular,
after straightforward algebraic manipulation it follows that
β̂ satisfies the following quadratic equation (decoupled from
α̂)

(1 − ν2)β̂2 + 2(Awx + Bwy)β̂ − (A2 + B2) = 0, (15)

where

A = xf − ρ sin θ − wxρθ̂, B = yf + ρ(cos θ − 1) − wyρθ̂

and θ̂ = θ when α̂ ≤ θf and θ̂ = 2π + θ otherwise.

If β̂ ∈ [0, 2π) is one solution of (15) then α̂ is determined
with back substitution in (13) and (14) when β̂ �= 0 whereas
α̂ = θ mod 2π otherwise. If there exist two solutions of
(15) in the interval [0, 2π), we repeat the previous steps
and determine a second pair of parameters (α̂, β̂) and the
corresponding final time Tf(α̂, β̂). Finally, we associate the
configuration (xf , yf) ∈ Pθ with the pair (α̂, β̂) that gives the
minimum total time Tf . In this way, we associate uniquely,
the configuration (xf , yf) ∈ Pθ with a pair (α̂, β̂) ∈ PLSL,θ.

B. LαSβRγ Paths

Similarly to the reachability analysis of LαSβLγ paths, it
follows that the coordinates (xf , yf) ∈ RLSR,θ are given by

xf = 2ρ sin α̂ + β̂ cos α̂ − ρ sin θ + wxTf , (16)

yf = ρ(1 + cos θ) − 2ρ cos α̂ + β̂ sinαρ + wyTf , (17)

where Tf = ρ(α̂ + γ̂) + β̂, γ̂ = (α̂ − θ) mod 2π. The
reachable set RLSR,θ and the contours of the minimum time
Tf are depicted in Fig. 4(b).

Given a point (xf , yf) ∈ RLSR,θ we can determine the pair
of parameters (α̂, β̂) ∈ PLSR,θ. In particular, it follows that
α̂ satisfies the following transcendental equation (decoupled
from β̂)

D(α̂) sin α̂ + E(α̂) cos α̂ = Bwx − Awy + 2ρ, (18)

where,

A = xf + ρ sin θ + wxρθ̂, B = yf − ρ(cos θ + 1) + wyρθ̂,

D(α̂) = A − 2ρ(wy + wxα̂), E(α̂) = −B − 2ρ(wx − wyα̂),

and θ̂ = θ when α̂ ≥ θ and θ̂ = 2π + θ otherwise. Since
α̂ ∈ [0, 2π) necessarily, it follows that equation (18) has
a finite number of solutions. For each α̂ ∈ [0, 2π), we can
uniquely determine β̂ with back substitution in (16) and (17).
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(a) Reachable set RLSL,θ .
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(b) Reachable set RLSR,θ .

Fig. 4. Reachable sets Rk,θ .

C. LαRβLγ and LαrβLγ Paths

Similarly to the reachability analysis of LαSβLγ paths, it
follows that the coordinates (xf , yf) ∈ RLSR,θ are given by

xf = 2ρ(sin α̂ + sin(β̂ − α̂)) + ρ sin θ + wxρTf , (19)

yf = ρ(1 − cos θ) − 2ρ(cos α̂ − cos(β̂ − α̂)) + wyρTf , (20)

where, Tf = ρ(α̂ + β̂ + γ), γ = (θ − α̂ + β̂) mod 2π. The
reachable sets RLrL,θ and RLRL,θ along with the contours
of the cost function (minimum time Tf ) when β ∈ [0, π)
and β ∈ [π, 2π) are depicted in Fig. 5(a) and Fig. 5(b)
respectively.

Given now a point (xf , yf) ∈ RLRL,θ or RLrL,θ we can
determine the corresponding pair of parameters (α̂, β̂). In
particular, it follows after some algebraic manipulation that
β̂ satisfies the following transcendental equation (decoupled
from α̂)

K(β̂) + L(β̂) + 8ρ2(cos β̂ − 1) = 0, (21)
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where

K(β̂) = A2 + B2 + 4ρ2ν2β̂2, L(β̂) = 4ρβ̂(Bwy − Awx),

A = xf − ρ sin θ − wxρθ̂, B = −yf + ρ(1 − cos θ) + 2wyρ,

and θ̂ = θ when 0 ≤ θ − α̂ + β̂ < 2π, θ̂ = −2π + θ
when 2π ≤ θ − α̂ + β̂ < 4π and θ̂ = 2π + θ when −2π ≤
θ − α̂ + β̂ < 0.

Given β̂ ∈ [0, 2π), it follows after some algebraic manip-
ulation that α̂ satisfies[

M(β̂) N(β̂)
−N(β̂) M(β̂)

] [
sin α̂
cos α̂

]
= 2ρ

[
1 − cos β̂

sin β̂

]
, (22)

where

M(β̂) = A − 2β̂ρwx, N(β̂) = B + 2β̂ρwy.

The reachable sets for the other path types, namely
RαSβRγ , RαSβLγ , RαLβRγ and RαlβRγ , can be con-
structed in a similar fashion. It is interesting to note that
the parameter vector (α̂, β̂) is given in closed form only
for LαSβLγ and RαSβRγ , whereas the determination of the
parameter vector for the other six types of paths of Theo-
rem 1 requires the solution of a decoupled transcendental
equation. This is a significant departure from the results
of the standard MD problem where the parameter vector is
always given in a closed form expression (see for example
[15], [16]). However, our analysis has allowed us to reduce
the inverse problem of determining (α̂, β̂) as a function
of (xf , yf) ∈ Pθ to a system of equations of triangular
form. Thus, the path-synthesis for a specific steering problem
reduces to the solution of either a single transcendental
or quadratic equation to determine one parameter of the
problem whereas the second parameter is computed directly
with back substitution.

VI. TIME-OPTIMAL SYNTHESIS

The last step of our analysis deals with the construction
of a partition of the plane Pθ, such that, in each element
of the partition, a particular control sequence is optimal. In
particular, given a point (xf , yf) ∈ Pθ with (xf , yf) ∈ Rk,θ,
where k ∈ K ⊆ T, then u� ∈ U∗ for � ∈ K is a time-
optimal control sequence if and only if the time t� for
which Πθ

(
ϕ�(t�; α̂, β̂)

)
= (xf , yf) satisfies t� = mink∈K tk;

we write t� = Tf(x, y; θ). Repeating the process for each
(xf , yf) ∈ Pθ we construct the time-optimal partition of Pθ,
that is, we divide Pθ into eight domains, R∗

k,θ ⊂ Rk,θ

with k ∈ T, not necessarily connected, such that any
terminal configuration that lies in R∗

k,θ can be reached in
minimum time by application of the optimal control sequence
u∗ = uk ∈ U∗. Furthermore, the terminal configurations
that correspond to nonempty intersections of the boundaries
of two or more domains R∗

k,θ can be reached in minimum
time with the application of more than one of the eight
control sequences; we denote the union of all these nonempty
intersections as ∂R∗

θ .

The partition of Pθ, for θ = π/3 and fixed wind direction
φw = −π/4 are given in Fig. 7 for different values of the
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(a) Reachable set RLRL,θ .
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Fig. 5. Reachable sets Rk,θ .

wind-speed ν. In particular, as we observe in Fig. 7(a), the
partition of Pθ as well as the contours of the cost function
(minimum time Tf ) for ν = 0.2 (Fig 7(a)), are close to the
partition of the standard MD problem given in [13]. As the
magnitude ν increases, the partition, as well as the contours
of the cost function of ZMD and MD, become significantly
different. Furthermore, we observe that the extremal path
LαrβLγ , which is never an optimal path for the standard
MD problem, corresponds to non-negligible portions of the
partition as ν increases (Fig 7(c)-7(d)).

The partition of Pθ, for θ = π/3 and fixed wind-speed
ν = 0.5m/s are given in Fig. 8 for different wind directions
φw. Figures 8(a)-8(d) demonstrate how the wind direction
can dramatically alter the partition of the ZMD problem
compared with the standard MD problem. It is interesting
to note that for φw = −3π/4 (Fig. 8(a)) the extremal path
LαrβLγ corresponds to an optimal solution for the ZMD
problem for a significant portion of the partition of Pθ.
Furthermore, for each value of φw some path types are
somehow more favorable than others. For example, when
φw = −3π/4, as we see in Fig. 8(a), the LαRβLγ paths
correspond to a significantly larger portion of the partition
when compared with the standard MD problem, while the
same is true for LαRβLγ paths when φw = 3π/4 as we see
in Fig. 8(d).
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Plots of minimum-time paths for the steering problem
from x0 = (0, 0, 0) to xf = (−0.5, 3.4, π/3) for different
values of ν and φw are given in Figures 6(a) and 6(b)
respectively. We observe that the geometric characteristics
of the paths appear to be more sensitive to variations of the
wind direction than wind-speed variations.
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(a) Minimum-time paths for different values of ν
and φw = 3π/4.
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and ν = 0.5.

Fig. 6. Minimum-time paths for the ZMD problem.

VII. CONCLUSION

In this article we have addressed the time-optimal syn-
thesis problem for the steering of a vehicle with Dubins’
type kinematics operating in the presence of winds/currents.
Our analysis reveals that while the structure of the opti-
mal control for both the Zermelo-Markov-Dubins and the
Markov-Dubins problems are similar, the time-optimal syn-
thesis problems are significantly differentiated. Future work
includes the investigation of the ZMD for more realistic and
challenging wind/current velocity models.
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Fig. 7. Partition of Pπ/3 and contours of Tf = Tf(xf , yf) for
different values of the ν and φw = −π/4.
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Fig. 8. Partition of Pπ/3 and contours of Tf = Tf(xf , yf) for
different values of the φw and ν = 0.5m/s.
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