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Abstract— A new algorithm is presented to compute the
shortest path on a graph when the node transition costs depend
on the prior history of the path to the current node. The
algorithm is applied to solve path planning problems with
curvature constraints.

I. INTRODUCTION

The problem of planning a path for an autonomous vehicle
in a given environment, while avoiding obstacles, has been
studied for several years [1], [2], [3], [4]. Detailed surveys of
path planning and motion planning algorithms are provided,
for example, by Latombe [5], Hwang and Ahuja [6], and
more recently, by LaValle [7]. In its most generality, the
problem of path planning is to find a path from a given initial
point to a given destination in the environment such that it
does not intersect any obstacles, and such that the resulting
path can be followed by the vehicle. A time parameterization
along the path leads to a trajectory that must be followed by
the vehicle. During the last step, the trajectory needs to obey
the constraints imposed by the associated vehicle dynamics,
while also minimizing a certain cost function, e.g. time of
travel. The computation of a suitable trajectory from the
starting point to the goal destination is called the motion
planning problem.

Apart from the obvious lack of optimality, the approach
of addressing separately the geometric and dynamic parts of
the problem may also lead to dynamically infeasible paths;
the reason being that the geometric path planner has no
prior knowledge of the dynamic limitations of the vehicle.
If we want to ensure that the overall scheme will always
generate feasible paths, we have to bridge the gap between
the geometric and dynamic layers. This can only be achieved
if certain information about the dynamic envelope of the
vehicle is passed to the path planner.

In this paper we propose a new scheme to include
information about the class of dynamically feasible paths
early on (viz at the geometric layer). Furthermore, we do
this in an numerically efficient manner that is based on
a non-trivial modification of Dijkstra’s algorithm for the
solution of shortest-path problems on graphs. In that sense,
our algorithm is of more general interest than just vehicle
path/motion planning. It can be used to search for shortest
paths on a graph whenever the node transition costs depend
on the prior history of visited nodes. We show with simple
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examples the benefits of the proposed approach over the
standard short-sighted strategy of initially planning a path
without taking into account the dynamic envelope of the
vehicle.

II. CELL DECOMPOSITIONS

Geometric path planning methods based on cell decom-
position partition the obstacle-free configuration space into
convex, non-overlapping regions, called cells, and then em-
ploy techniques, such as Dijkstra’s algorithm, to search the
connectivity graph for a sequence of adjacent cells from
the initial point to the goal [5, Ch. 5 and 6]. One of the
most extensively used approximate cell decomposition tech-
niques is the quadtree method [8], [9], [10]. Multiresolution
schemes that use local/global cell decompositions of varying
fine/coarse resolution have been developed in [11], [12], [13],
and [14]. Other hierarchical path planning techniques, which
allow paths to travel through MIXED cells in early iterations
and then refine those paths in subsequent iterations, so that
they include only FREE or FULL cells, appear in [8], [15],
[16].

A. Capturing Curvature Information

Current path planning algorithms based on cell decompo-
sitions of the obstacle-free space work exceedingly well for
generating paths when no kinematic or dynamic constraints
are present. However, the motion of the actual vehicle
must obey such constraints. Without additional assumptions,
there is no guarantee that a feasible trajectory satisfying
these constraints will even exist within the channel of cells
computed by the path planning algorithm. At first glance, one
may argue that this is only an artifact of an inappropriate
choice of the edge cost function in the associated graph.
Below we provide a counter-example to this argument.

Consider the path planning problem depicted in Fig. 1,
where S denotes the initial position, G denotes the goal, and
the dark areas are obstacles. Consider two vehicles A and B,
whose minimum radii of turn are kinematically constrained
by rA

min and rB
min respectively, such that rA

min ≤ �/2 and rB
min >

�. Clearly, the dashed path in Fig. 1 is feasible for vehicle
A, but not for vehicle B. A path planning algorithm for B
ought to result in the bold path shown in Fig. 1.

Figure 2(a) depicts the same problem with a uniform cell
decomposition of cell size d = �/6. The channel containing
the dashed path of Fig. 1 is denoted by cells with bold
outlines. Such a channel is obviously not traversable by
vehicle B. However, notice that no pair of successive cells is
by itself infeasible, i.e. a channel defined by two successive
cells alone always contains a feasible path. Stated differently,
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Fig. 1. Counterexample for path planning without kinematic constraint.

for any two adjacent cells, there is no cell-dependent property
associated with the two adjacent cells that can be penalized
by an edge cost function in order to prevent the graph search
from generating a channel such as the one shown in Fig. 2(a).
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Fig. 2. (a) No pair of successive cells is itself infeasible; (b) Cells are too
large, all cells are MIXED.

It may be further argued that a feasible path is guaranteed
to exist in any channel if the dimensions of the cells are large
enough. Indeed, Ref. [17] shows that a curvature-bounded
path with local curvature less than or equal to 1/rmin exists in
a polygonal channel if the width w of the channel satisfies the
inequality w ≥ τrmin, where τ satisfies a certain polynomial
equation. The above counter-example also serves to illustrate
that such a choice of cells may be too restrictive in practice.
As illustrated in Figure 2(b), the dimensions of the cells
may be too large to capture the details of the environment.
In Figure 2(b), d ≈ �/2.

B. Working with Multiple Cells

In this paper, we propose the following approach to plan
a path using cell decompositions, while incorporating path
curvature information: On the topological graph associated
with a given cell decomposition, we define a cost function
based on k−tuples of nodes, for some fixed k > 2, such
that the elements of each k−tuple are pairwise adjacent.
The question of feasibility of traversal through k−tuples
of cells (rather than traversal through two successive cells
only) allows for more general definitions of cost functions. In
particular, we can introduce transition costs that capture the
maximum approximate curvature for any path lying inside
the channel. As a result, we can ensure that a feasible
trajectory will always exist inside the computed channel
of cells at the geometric, path-planning layer, even before
invoking the motion-planning task. It should be noted that
similar ideas have been explored in [18] and [19], for the
specific case of k = 1.

III. A GRAPH SEARCH ALGORITHM FOR HISTORIES OF

CELL TRANSITIONS

We consider a uniform decomposition Cd of the environ-
ment W , consisting of N cells, such that every cell in Cd
is a square of size d. A cell ci ∈ Cd will be identified by
the location (xi,yi) of its center in some specified set of

Cartesian axes. We may then construct a graph G
Δ= (V ,E ),

such that each element in the set of nodes V corresponds to
a unique, obstacle-free cell. We label the nodes as 1,2, . . . ,N.
Two nodes are adjacent if the corresponding cells are geo-
metrically adjacent1. The edge set E ⊂ V ×V consists of
all pairs (i, j), i, j ∈ V with nodes i and j adjacent. We
now describe two path planning problems on the graph G
associated with Cd .

A. A Cell History-Based Cost

We introduce a non-negative edge cost function g : E →
R+ that assigns to each pair of adjacent nodes in G a non-
negative number (the cost of transitioning between the two
nodes defining the edge). For given initial and terminal nodes
iS, iG ∈ V , an admissible path π Δ= ( jπ0 , jπ1 , . . . , jπP) in G is
such that jπk ∈ V , ( jπk−1, jπk ) ∈ E , k = 1, . . . ,P, with jπ0 = iS,
jπP = iG, and jπp �= jπr , for p,r ∈ {0, . . . ,P}, with p �= r.

Problem 1. Let the cost of an admissible path π be

J(π) =
P

∑
k=1

g(( jπk−1, jπk )). (1)

Find an admissible path π∗ in G such that J(π∗) ≤ J(π) for
every admissible path π in G .

A class of algorithms used to solve Problem 1 are the
label correcting algorithms (cf. [20], [21]). The proposed
algorithm falls in the same category, as do the well-known
Bellman-Ford, Dijkstra, [20], [21], and A∗ [7] algorithms.
Label correcting algorithms progressively search for the least
cost path starting from iS and ending at node i ∈ V , by
iteratively reducing an estimate of the least cost to i, called
the label of the node i. These algorithms also maintain a
set P (referred to as the OPEN list in [20], [21]), which
contains the nodes whose labels can potentially be reduced
from their current value, as well as a backpointer function
b : V →V , which records the immediate predecessor of each
node i ∈ V in the optimal path from iS to i.

Consider now a different path planning problem with
a cost function that depends on fixed-length sequences of
nodes. To this end, define VH

Δ= {(i0, i1, . . . , iH) : (ik−1, ik) ∈
E , k = 1, . . . ,H, ip �= ir, for p,r ∈ {0, . . . ,H}, with p �= r},
where H is a non-negative integer. We associate with each
element of VH a non-negative cost function g̃H : VH → R+.
The problem statement is then as follows:

Problem 2a. For any admissible path π Δ= ( jπ0 , . . . , jπP)
in G , such that jπ0 = iS, jπP = iG, assume that iS and iG are

1We consider 4-connectivity for this work, that is, cells that have two
vertices in common are said to be adjacent.
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Fig. 3. Example of construction of graph GH for a given graph G . In this
example, H = 2.



sufficiently far away from each other, such that P ≥ H + 1,
and let the cost associated with π be

J̃ (π) =
P

∑
k=H+1

g̃H+1 (( jk−H−1, jk−H , . . . , jk)) . (2)

Find an admissible path π∗ in G such that J̃ (π∗) ≤
J̃ (π) for every admissible path π in G .

Note that V0 = V and V1 = E , and consequently, Problem
2a reduces to Problem 1 when H = 0. Henceforth, we will
only consider the case H ≥ 1. It is then possible to transform
Problem 2a into an equivalent problem on a “lifted” graph,
whose nodes are the elements of VH . We define the adjacency
relations on VH as follows: an element I ∈ VH is adjacent
to J ∈ VH if (J(H+1), I(H+1)) ∈ E , J(k) = I(k−1), for every
k = 2, . . . ,H + 1, and J(1) �= I(H+1), where I(k) denotes the
kth element of the (H + 1)−tuple I. Let EH ⊂ VH ×VH be
the edge set of all pairs (J, I), such that I is adjacent to J.
Figure 3 a pair of graphs G and GH , for H = 2.

For given initial and terminal nodes iS, iG ∈ V , an
admissible path Π Δ= (JΠ0 ,JΠ1 , . . . ,JΠQ ) in GH

Δ= (VH ,EH)
is such that JΠk ∈ VH , (JΠk−1,J

Π
k ) ∈ EH , k = 1, . . . ,Q, and

JΠ,(1)
0 = iS, JΠ,(H+1)

Q = iG. Note that every admissible path

Π Δ= (JΠ0 ,JΠ1 , . . . ,JΠQ ) in GH uniquely corresponds to an

admissible path π Δ= ( jπ0 , jπ1 , . . . , jπP) in G , with P = (Q+1)H
and JΠ,(�)

k = jπkH+�−1, for k = 0,1, . . . ,Q − 1, and JQ =
( jP−H , . . . , jP). Since we assumed in Problem 2a that P ≥
H +1, we may assume here that Q ≥ 1.

For every pair of adjacent nodes in GH we define a non-
negative cost function gH : EH → R+ such that gH((J, I)) =
g̃H+1((J(1), . . . ,J(H+1), I(H+1))) for every (J, I) ∈ EH . Con-
sider now the following shortest path problem on GH .

Problem 2b. Let the cost of an admissible Π in GH be

J (Π) =
Q

∑
k=1

gH
(
JΠk−1,J

Π
k

)
. (3)

Find an admissible path Π∗ such that J (Π∗) ≤ J (Π) for
every admissible path Π in GH .

The expression for J (Π) in (3) is of the form (1), and
thus Problem 2b may be solved using a label correcting
algorithm, such as Dijkstra’s algorithm. However, as we shall
demonstrate in the sequel, this approach is computationally
expensive. In the next section, we present a modification of
the general label correcting algorithm that solves Problem 2a
directly, without first transforming it to Problem 2b.

B. Description of Proposed Algorithm

For every node j ∈ V , and integer L such that 1≤ L ≤H,
we define the set T j,L

Δ= {I j,m ∈ VL : I(L+1)
j,m = j}. We index

the elements of T j,L with the natural numbers 1, . . . ,
∣∣T j,L

∣∣.
Let TL

Δ= max
{∣∣T j,L

∣∣ : j ∈ V
}
. The algorithm allows the user

to specify L, and it maintains a family of history functions
hm : V → VH ∪{NULL}, m = 1, . . . ,TL instead of the back-
pointer function in the standard label correcting algorithm.
Along with multiple histories, the algorithm also maintains
multiple labels for each node, i.e., functions dm : V → R+,
m = 1, . . . ,TL. Consequently, dm( j), m = 1, . . . ,

∣∣T j,L
∣∣ is an

estimate of the least cost of the path from iS to j in which the
predecessor history of j of length L is I j,m. By definition, we
set dm( j) =∞ for m = |T j,L|+1, . . . ,TL if |T j,L|< TL. Finally,
as in the standard label correcting algorithm, the proposed
algorithm maintains a set P which contains the nodes whose
labels can potentially be reduced from their current value.

For the sake of clarity, we first describe the proposed
algorithm for the case L = H. The algorithm can be easily
generalized to the case L �= H (Section III-D).

INITIALIZATION

1) For every j ∈ V and m = 1, . . . ,TH , set dm( j) =∞, and
hm( j) = NULL.

2) For every j ∈ V , set N j
Δ=

{
Jm ∈ VH+1 :

J(1)
m = iS,

(
J(2)
m , . . . ,J(H+2)

m

)
= I j,m ∈ T j,H

}
3) Set P =

{
( j,m) : N j �= ∅, and Jm ∈ N j

}
.

4) For every ( j,m) ∈ P , set dm( j) = g̃H+1 (Jm) and

hm( j) =
(
J(1)
m , . . . ,J(H+1)

m

)
.

ITERATIVE STEPS

while P �= ∅, repeat Steps 1) through 4):

1) Compute ( j∗,m∗) = argmin
{

dm( j) : ( j,m) ∈ P
}

.

2) Set P = P\{( j∗,m∗)}, and for each j ∈ V such that
( j∗, j) ∈ E , perform Step 3).

3) For every m = 1, . . . ,
∣∣T j,H

∣∣ set

Hm
Δ=

{
k ∈ {1, . . . ,

∣∣T j∗,H
∣∣} : hk( j∗) �= NULL,(

h(3)
k ( j∗), . . . ,h(H+1)

k ( j∗), j∗, j
)

= I j,m ∈ T j,H

}
.

4) For every m such that Hm �= ∅,

Dk,m
Δ= dk( j∗) + g̃H+1

((
h(2)

k ( j∗), I j,m

))
, ∀k ∈ Hm

if dm( j) > min
k∈Hm

{
Dk,m

}
, (4)

then P = P ∪{( j,m)} , (5)

dm( j) = min
k∈Hm

{
Dk,m

}
, (6)

μ Δ= arg min
k∈Hm

{
Dk,m

}
, (7)

hm( j) =
(
h(2)
μ ( j∗), . . . ,h(H+1)

μ ( j∗), j∗
)

. (8)

The algorithm terminates when P = ∅, at which point
it returns the functions dm and hm, for m = 1, . . . ,TH .
For every node i �= iS in V , we may then calculate
the optimal path from iS to i as follows: define r0

Δ=
argmin

{
dm(i) : m ∈ {1, . . . , |Ti,H |}

}
, i0

Δ= i. If h(1)
r0 (i0) = iS,

then defining P = H + 1, we have that a path from j0 = iS
to jP = i is ( j0, j1 . . . , jP) = (hr0(i0), i). Otherwise, let rk and

ik to be such that ik
Δ= h(H+1)

rk−1 (ik−1) and Iik,rk = hrk−1(ik−1),
for k = 1, . . . ,M, where M is such that h(1)

rM (iM) = iS. Letting
P = M+H +1, the path ( j0, j1, . . . , jP) from j0 = iS to jP = i
is given by ( j0, . . . , jH) = hrM (iM), and jH+� = iM−�+1 for
� = 1, . . . ,M +1.

In Section III-C, we show that the resultant path is indeed
optimal, and that its cost, given by dr0(i), is equal to the least



cost incurred from iS to i. We first demonstrate the proposed
algorithm via a simple example.

Example 1: Consider the graph shown in Fig. 4, where
iS = 1 and let L = H = 1. Let g̃2 be a non-negative cost
function given by the lookup Table I (for brevity, the values
of only some of the elements of V2 are shown).
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Fig. 4. Graph for Example 1.

Note that

∣∣T j,1
∣∣ =

⎧⎨
⎩

2, j ∈ {1,4,13,16},
3, j ∈ {2,3,5,8,9,12,14,15},
4, otherwise,

and hence T1 = 4, i.e., the algorithm maintains at most 4
histories and labels for each node. We index the elements of
T j,1 as 1,2,3,4 corresponding to UP, RIGHT, DOWN, LEFT

edges of j, with reference to Fig. 4. If a particular edge is
absent, the corresponding index applies to the next edge. For
example, the indices of (5,6),(10,6),(7,6),(2,6) ∈ T6,1 are
1,2,3, and 4 respectively, while the indices of (5,1),(2,1) ∈
T1,1 are 1 and 2 respectively.

Applying the algorithm, we obtain that Initialization
Step 2) results in N3 = {J3

1} = {(1,2,3)}, N6 = {J6
1 ,J6

4} =
{(1,5,6),(1,2,6)}, N9 = {J9

3} = {(1,5,9)}, and N j = ∅

for j ∈ {1, . . .16}\{3,6,9}. Consequently, Step 3) results in
P = {(3,1),(6,1),(6,4),(9,3)}. Using Table I, Initialization
Step 4) results in d1(3) = 5,d1(6) = 2,d4(6) = 6 and h1(6) =
(1,5),h4(6) = (1,2),h1(9) = 8,h3(9) = (1,5).

Next, Iterative Step 1) results in ( j∗,m∗) = (6,1). Con-
sequently, Step 2) results in P = {(3,1),(6,4),(9,3)}, and
Step 3) is performed for nodes 2, 5, 7 and 10. In particular,
for node 2, Step 3) results in H1 = H3 = ∅, since for
m = 1,3 we have I2,m = (1,2),(3,2) respectively, which do
not satisfy the set-membership condition in Step 3). However,
for m = 2, I2,m = (6,2) = ( j∗, j), and we have H2 = {1,4}.
Hence, for node 2, Step 4) is performed only for m = 2. Using
Table I, we see that mink∈H2

{
dk(6)+ g̃2

(
h(2)

k (6),6,2
)}

=
2+5 = 7 and μ = 1. Hence, (6) and (8) result in d2(2) = 7,
and h2(2) = (h(2)

1 (6),6) = (5,6), while (5) results in P =
{(3,1),(6,4),(9,3),(2,2)}.

Steps 3) and 4) are repeated for nodes 5,7, and 10,
after which we have P = {(3,1),(6,4),(9,3),(2,2),(7,1),
(10,4),(5,2)}, and d2(5) = 18, d1(7) = 9, d4(10) = 7. Conse-
quently, Step 1) of the next iteration of the algorithm results
in ( j∗,m∗) = (3,1).

C. Optimality and Performance

The definition of an admissible path Π for Problem 2b
required only JΠ,(H+1)

Q = iG, where JQ ∈ VH was the last
element of Π. The first H elements of JQ were unspecified,

TABLE I

COST FUNCTION USED IN EXAMPLE 1.

I ∈ V2 g̃2(I) I ∈ V2 g̃2(I)
(1,2,3) 5 (5,6,2) 5
(1,2,6) 6 (5,6,7) 7
(1,5,6) 2 (5,6,10) 8
(1,5,9) 8 (2,6,5) 12

(2,6,10) 5 (2,6,7) 8

which implies that different admissible paths in GH could
possibly have different terminal nodes. In the proposed
algorithm, we recognize this fact as multiple histories for
every node i ∈ V , denoted by the elements of Ti,H . We
denote the optimal cost from iS to i, given a particular
Ii,m ∈ Ti,H , by J ∗

i,m. The following result shows that the
proposed algorithm computes J ∗

i,m for every i ∈ V and
m = 1, . . . , |Ti,H |.

Proposition 1: For every node i∈V , if there exists at least
one admissible path from iS to i with a particular Ii,m ∈Ti,H ,
for some m ∈ {1, . . . , |Ti,H |}, then the proposed algorithm
terminates with dm(i) = J ∗

i,m. Otherwise, the algorithm
terminates with dm(i) = ∞.

Proof: We first show that the algorithm terminates after
a finite number of iterations. Each time a pair ( j,m) is added
to P in (5), the value of dm( j) is reduced. Since there is a
finite number of nodes and TH is finite, there is also a finite
number of paths containing no cycles from iS to i. Since
the number of reductions of dm( j) is at most equal to the
number of possible paths from iS to i, it follows that the
number of possible reductions of dm( j) is also finite. Hence,
each pair ( j,m) is added to P a finite number of times. Since
a ( j,m) pair is always deleted from P at each iteration, it
follows that P = ∅ after a finite number of iterations and
the algorithm terminates.

Next, suppose there exists at least one admissible path in
G from iS to i associated with a particular Ii,mP ∈Ti,H . Since
there are finitely many paths from iS to i with no cycles, and
since cycles have non-negative cost, there exists an optimal
path. Suppose π∗ Δ= ( j0, j1, . . . , jP) is an optimal path with
j0 = iS, jP = i, and ( jP−H , . . . , jP) = Ii,mP . Also, let mk be

such that ( jk−H , . . . , jk)
Δ= I jk,mk , for k ∈ {H, . . . ,P}. Since

π∗ is optimal, the cost from j0 = iG to node jk ∈ π∗ with the
given I jk,mk , must be J ∗

jk,mk
, for every k ∈ {1, . . . ,P}.

Next, for the sake of contradiction, suppose dmP(i) >
J ∗

i,mP
after the algorithm terminates. This implies that

dmP−1( jP−1) > J ∗
jP−1,mP−1

, for otherwise, when ( jP−1,mP−1)
were removed from P , the condition (4) of Iterative Step
4) of the algorithm would have been satisfied due to the
optimality of π∗. Furthermore, the minimization in (4) would
have been satisfied by k = mP−1 ∈HmP , and (6) would have
resulted

dmP(i) = min
k∈HmP

{
dk( jP−1)+ g̃H+1

((
h(2)

k ( jP−1), Ii,mP

))}

= J ∗
jP−1,mP−1

+ g̃H+1

((
h(2)

mP−1( jP−1), Ii,mP

))
= J ∗

jP,mP
,

since h(2)
mP−1( jP−1) = jP−H−1 by (8). By similar argu-

ments, dmP−1( jP−1) > J ∗
jP−1,mP−1

implies that dmP−2( jP−2) >
J ∗

jP−2,mP−2
and so on, leading to the conclusion that

dmH+1( jH+1) > J ∗
jH+1,mH+1

. However, Initialization Step 4)



TABLE II

COMPARISON OF EXECUTION TIMES: L = H .

|G | H Avg. time ratio |G | H Avg. time ratio
100 1 1.1472 100 3 1.475
400 1 1.3680 225 3 1.531

1600 1 1.7551 400 3 1.536
100 2 1.8176 36 4 2.544
400 2 2.3000 64 4 2.519
900 2 3.8407 100 4 2.849

precludes this situation, thus leading to a contradiction.
Hence, we must have dmP(i) = J ∗

i,mP
after the termination

of the algorithm.
Proposition 1 shows that the algorithm computes J ∗

i,m for
every node i ∈ V and every history Ii,m ∈ Ti,H . However,
since we only need to compute the optimal path and optimal
cost from iS to iG, we may explore the possibility of terminat-
ing the algorithm earlier. Proposition 2, stated without proof
for the lack of space, implies that this is indeed possible.

Proposition 2: Each pair ( j,m), j ∈ V , m = 1, . . . , |Ti,H |
enters the set P at most once during the execution of the
algorithm.

In Iterative Step 4) the conditions (4) and (5) imply that a
pair ( j,m) is added to P only when the value of dm( j) can
be reduced. It follows from Proposition 2 that once a pair
( j,m) enters P , the value of dm( j) cannot be reduced further.
The implications of this fact for the implementation of the
proposed algorithm are: first, since dm( j∗) cannot be reduced
further if ( j∗,m)∈P , Iterative Step 3) need to be performed
only for every m∈ {1, . . . ,

∣∣T j,H
∣∣} such that ( j,m) /∈P; and

second, since we only seek to find an optimal path from iS to
iG, the algorithm may be terminated as soon as all possible
histories of iG enter P , i.e., the condition of the while loop
of the Iterative Steps may be modified as:

while (P �= ∅) and ((iG,mG) ∈ P for at least one
mG ∈ {1, . . . ,

∣∣TiG,H
∣∣}) repeat Steps 1) through 4).

Table II shows, for several sample test cases, the ratios of
the total computational times required for the construction of
the graph GH and the execution of Dijkstra’s algorithm on
GH over the execution times of the proposed algorithm. The
graphs G used for Table II were topological graphs arising
from uniform cell decompositions.We note that although the
complexity of the two algorithms is the same (polynomial in
N and exponential in H), the absolute execution time of the
proposed algorithm is lower than that of Dijkstra’s algorithm
on GH , primarily due to the fact that the proposed algorithm
does not explicitly construct the lifted graph. Furthermore,
the adjacency list of GH requires k times the memory required
by the proposed algorithm for storing the multiple histories
of each node, where k is the connectivity.

D. General Algorithm

The general algorithm allows the user to specify a param-
eter L, which changes the execution time of the algorithm.
The parameter L is the length of histories of each node for
which a record of the least cost-to-come is maintained. By
Proposition 2, the upper bound on the number of iterations
of the algorithm is NTL, which could be much smaller than
NTH if L < H. On the other hand, the resultant path is
no longer guaranteed to be optimal. Although analytical

results on bounds of sub-optimality when L < H are not yet
available, nonetheless, our numerical examples show that the
level of sub-optimality seems to be quite acceptable, in return
for significantly reduced execution times. The algorithm for
L < H is a simple generalization of the algorithm presented
in Section III-B and the its details are left to the reader.

Table III shows ratios of the total computational times
required for the direct solution of Problem 2b using Dijkstra’s
algorithm over the execution times of the proposed algorithm
for several sample graphs of varying dimensionality. The
algorithm was found to achieve the optimal solution on
a large number of occasions, but there are of course no
guarantees that this will always be the case when L < H,
and sporadic cases of sub-optimal results indeed do occur.
A similar observation has been noted in [18], for the specific
case of H = 1 and L = 0.

TABLE III

COMPARISON OF EXECUTION TIMES: L < H .

|G | H L Avg. time ratio |G | H L Avg. time ratio
100 2 1 2.145 64 4 1 116.9
400 2 1 3.230 64 4 2 35.85
100 3 1 15.81 64 4 3 8.864
400 3 1 39.82 36 5 1 427.0
121 3 2 5.648 64 5 1 1185
361 3 2 7.375 64 5 2 395.6
36 4 1 46.63 64 5 3 97.39

IV. APPLICATION TO PATH PLANNING

Here we consider the relatively simple, yet important, ex-
ample of finding channels containing paths whose curvature
is bounded by an a priori given upper bound. We use the
same notation as in Section III.

We define the channel W π ⊂W associated with a path π
in G given by W π =

⋃P
k=0 ck. We say that π is feasible if

there exists a geometric path of maximum curvature 1/rmin,
for a given rmin, which lies entirely within W π . A necessary
condition for π to be feasible is that, for every k = 1, . . . ,P−
H − 1, the fixed-length sub-path ( jk, jk+1, . . . , jk+H+1) be
also feasible. In view of the previous observation we
define the tile associated with the fixed-length sub-path
( jk, jk+1, . . . , jk+H+1) of π to be the succession of cells
(c jk , . . . ,c jk+H+1). For a given H, it is possible to identify a
finite set of distinct tiles A = {A 1, . . . ,A aH}, such that the
tile associated with any element of VH+1 can be obtained via
a sequence of geometric operations of translation, rotation,
and reflection of one of the tiles in that set. For example, for
H = 3 and rmin = 3d, where d is the size of each cell in Cd ,
the feasible tile set contains seven tiles, as shown in Fig. 5.

Now, let Aaug be the set of tiles obtained via any finite
number of geometric operations on the elements of the set
A , and let Vfeas

Δ= {I ∈ VH+1 : (cI(1) , . . . ,cI(H+2) )∈Aaug}. We
will use the set Aaug to define the cost function g̃H+1 in (2).
For instance, Fig. 6 shows the application of the proposed
algorithm to the problem presented in Sec. II-A, using the
binary cost function (H = 3)

g̃4(I) =
{

0, I ∈ Vfeas,
∞, I ∈ VH+1\Vfeas.



The channel of cells marked in red is the result of the
proposed algorithm, while the channel marked in blue is the
result of performing a standard graph search on G using a
cost defined on the edge set only (H = 0). The corresponding
geometric paths of minimum possible curvature inside the
channels are also shown in the same figure. The red curve
is longer of course, but it has lower maximum curvature.

Figure 7 shows another, more interesting example, where
the environment is cluttered with randomly distributed ob-
stacles. The corresponding geometric paths of minimum
possible curvature inside the channels are also shown in
the same figure. Most interestingly, Fig. 7(b) shows the
corresponding optimal velocity profile from the solution of
the minimum-time problem along each path [22]. Although
the red path is longer, a vehicle following this path will take
less time than a vehicle following the shorter (but with more
and sharper turns) blue path. This example demonstrates the
benefits of the proposed algorithm for the solution of motion
planning problems.

V. CONCLUSIONS

We have introduced an algorithm for finding shortest
distance paths in general graphs when transitions between
the graph nodes depend on prior path history. The proposed
algorithm is based on an extension of Dijkstra’s algorithm
for two-node transitions. We have applied this algorithm for
the solution of path planning and motion planning problem
subject to kinodynamic constraints. By including curvature
information of a feasible path at the path (geometric) plan-
ning step we can ensure better paths at the motion planning
step than those obtained if the two planning steps were
applied sequentially, as is typically the current practice.
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