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Abstract

We present a numerical algorithm for solving the
Hamilton-Jacobi Bellman equation using a succes-
sive Galerkin-wavelet projection scheme. According
to this scheme, the so-called Generalized-Hamilton-
Jacobi-Bellman (GHJB) equation is solved iteratively
starting from a stabilizing solution. As basis func-
tion for the Galerkin projections we consider the anti-
derivatives of the well-known Daubechies’ wavelets.
Wavelets offer several advantages over traditional bases
functions such as time-frequency localization and com-
pact support. A numerical example illustrates the pro-
posed approach.

1 Introduction

For general nonlinear systems with arbitrary per-
formance criteria, optimal feedback controllers are com-
puted via the solution to the Hamilton-Jacobi-Bellman
(HJB) partial differential equation. The solution to this
nonlinear pde provides the optimal cost as a function of
the system state. The corresponding optimal control is
subsequently derived in terms of an explicit expression
of this solution. The difficulty of the approach lies in the
fact that, in general, it is difficult to obtain closed-form
solutions to the HJB equation and thus, more often
than not, one resorts to numerical solutions. Even nu-
merical techniques may not be adequate however due
to the high complexity of the problem (especially for
multi-state systems) and the possibility of the existence
of non-smooth solutions. As a result, several alterna-
tive techniques have been proposed in the past that
approximate the solution to the HJB equation using
perturbation methods [17], feedback linearization [10],
state dependent Ricatti equations [6], neural network
or other open-loop interpolation methods [14, 12], fi-
nite element and finite differences [13, 5] etc.

Recently, Beard et al [1] proposed a Galerkin ap-
proximation method for solving the so-called Gen-
eralized Hamilton-Jacobi-Bellman (GHJB) equation.
They proposed the Successive Galerkin Approxima-
tion (SGA) algorithm based on iterating between the
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solution of the value function that satisfies the pre-
Hamiltonian and the optimal control law. Under cer-
tain mild conditions the GHJB equation defines a con-
traction mapping on the set of admissible controls. It is
shown in [1] that the optimal control is the fixed point
of this contraction, if one exists. Galerkin’s spectral
method is used at each iteration step in order to find
an approximation of the value function (and hence also
the associated suboptimal controller) in a space of pre-
selected (typically polynomial) basis functions. In [1] it
was proven that the so-generated series of suboptimal
control laws converges to the optimal one by choos-
ing a sufficiently large number of bases functions. The
approach seems to work well for a series of practical
problems [15, 2].

2 Wavelets as Bases for the SGA

In the Galerkin projection scheme of the SGA algo-
rithm proposed by [1] and [2], the choice of basis func-
tions is crucial. A rich set of polynomial basis functions
will ensure a good approximation in a relatively small
number of iteration steps. However, the number and
form of basis functions has to be selected a priori. If
the required accuracy is not achieved, more basis func-
tion must be added to the original set and the process
must be repeated. This increases the computational
burden and often leads to trial and error for selecting
a complete set of basis functions, although it is reason-
able to start from a set that spans the system dynamics,
as was done, for example, in [2]. An additional point of
complication arises from the well-known fact that the
HJB equation may have non-smooth solutions (such is
the case for time-optimal control problems). Such non-
smooth solutions are not represented efficiently using
polynomial or other smooth basis functions.

To overcome the aforementioned difficulties, in this
paper we propose the use wavelets as basis functions in
the Galerkin projection scheme of the SGA. Wavelets
have certain appealing properties for efficient func-
tion approximation including (bi-)orthogonality, time-
frequency localization, compact support, etc. Another
important aspect is the availability of fast, recursive
algorithms for doing computations with wavelets.

Since Mallat developed the main algorithm for the
wavelet transform [16], wavelets have played a critical
role in the areas of signal processing, data and image



compression, modelling of multi-scale phenomena, etc.
The advantages of wavelets in solving pde’s has been
noticed early on [11, 21]. Some of the most recent re-
sults in this context have appeared in [7]. Glowinski et
al, for example, formulated a Galerkin-wavelet method
for various boundary value problems [11]. They applied
their method to the heat equation and to Burger’s equa-
tion. However, their methodology may cause some diffi-
culties. First, Daubechies’ wavelets of low order cannot
be used due to their lack of sufficient regularity. Sec-
ond, Dirichlet boundary conditions cannot be applied
directly without further modifications. Related results
have appeared in [3]. In order to overcome the previ-
ous difficulties, Xu and Shann [21] constructed a set
of basis functions using the anti-derivatives of wavelets.
This set is sufficiently smooth with small support. They
applied this set of bases to two-point boundary value
problems and obtained numerical results of high con-
sistency. The results presented herein have been moti-
vated to a large extend by these results.

In addition to Galerkin-wavelet methods,
Bertoluzza et al [3] studied collocation using in-
terpolating wavelets derived from the auto-correlation
function of the Daubechies wavelets for solving pde’s.
According to the assignment of collocation points
several collocation algorithms were devised and were
applied to two-point boundary value problems. The
implementation of this collocation algorithm for solving
the HJB/GHJB equation is described in a companion
paper [18].

3 Wavelet Theory Fundamentals

Suppose one is given a sequence {Vj : j ∈ Z} of
closed subspaces of L2(R) with the following proper-
ties [8].

1. Nesting: Vj ⊂ Vj+1, ∀j ∈ Z

2. Closure: clos
(⋃

j∈Z
Vj

)
= L2(R)

3. Shrinking:
⋂

j∈Z
Vj = {0}

4. Multiresolution: f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1, ∀j ∈
Z

5. Shifting: f(x) ∈ Vj ⇔ f(x − 2−jk) ∈ Vj , ∀j ∈ Z.

6. There exists a scaling function φ ∈ V0 such that
the integer shifts of φ form an orthonormal basis
for V0, i.e.,

V0 = span{φ(x − k), k ∈ Z}

The scaling function φ can be used to construct
the wavelet ψ such that

Wj = span{2j/2ψ(2jx − k), k ∈ Z}.

Then L2(R) can be decomposed as

L2(R) = V0

+∞⊕
j=0

Wj =
+∞⊕

j=−∞
Wj (1)

where Wj is the orthogonal complement of Vj in Vj+1.
Notice, in particular, that V0 =

⊕−1
j=−∞ Wj . Equa-

tion (1) is said to provide a Multi-Resolution Analysis
(MRA) of L2(R). In case the scaling function φ and the
wavelet ψ have compact support, we have a compactly
supported MRA.

The family of Daubechies’ wavelets [8] is one of
the well-known sets of functions that generate an
MRA of L2(R) by satisfying all of the above proper-
ties. The higher the order of the Daubechies’ wavelet,
the smoother the scaling function and the associ-
ated wavelet. The width of compact support of the
Daubechies wavelet of order p will be denoted by
[0, L] = [0, 2p − 1]. Differentiability requires p ≥ 3.
As a matter of fact, the smoothness properties of the
wavelets is related to the support of the function and for
the Daubechies family it increases approximately lin-
early with the wavelet order1. Differentiability of the
wavelet is important since it determines the approx-
imation error; it is ultimately related to the wavelet
moments. In fact, the following is true [4, Th. 20].

Theorem 1 The following are equivalent:

(i) The first m moments of the wavelet ψ are zero,
i.e., ∫

x�ψ(x) dx = 0, � = 0, 1, . . . ,m − 1

(ii) All polynomials of degree up to m − 1 can be
expressed as linear combinations of shifted scaling func-
tions at any scale.

Using this result we can ensure that the approxi-
mation space includes the polynomials up to a certain
degree by choosing to work with a wavelet having a
sufficient number of zero moments.

4 Function Spaces and Frames

The original work of Daubechies involves wavelets
defined over the whole real line. For pde’s over a finite
domain with boundary conditions one needs to con-
struct MRA’s over bounded, open intervals. Without
loss of generality, we henceforth assume that the do-
main of interest is Ω = (0, L) = (0, 2p− 1). We restrict
our attention to approximating functions that provide
solutions to pde’s and we thus focus on the following
L2-Sobolev space Hs(Ω), defined as

Hs(Ω) �
{

u ∈ L2(Ω) |
∫

Ω

|û(ω)|2(1 + |ω|2)s dω ≤ ∞
}

1It can be shown that φ ∈ Cα(p); for p = 2, α(2) ≈ 0.55 for
p = 3, α(3) ≈ 1.088 while for large p, α(p) ≈ 0.3485p.



where û is the Fourier transform of u

û(ω) �
∫

Ω

ejωxu(x) dx

Sufficient smoothness of the functions belonging to the
space Hs(Ω) is ensured by the Sobolev embedding the-
orem [20] which states that Hs(Ω) ⊂ Cs′

(Ω) for s ≤
s′ + 1

2 . In this paper we deal only with the case s = 1.
For certain problems with zero left-boundary condition
we will also need to work with the following subspace
of H1(Ω) defined by H1

∗ (Ω) � {u ∈ H1(Ω) | u(0) = 0}.

A first step in constructing a basis for the spaces
H1(Ω) and H1

∗ (Ω) is the construction of a frame.

Definition 1 Let {φn}∞n=1 be a subset of a Banach
space (X, ‖ · ‖X) and let span{φn|1 ≤ n < ∞} be the
set of all elements

∑
αnφn (αn ∈ R) which converge

(strongly) in X. Then {φn} is said to be a frame of X
if span{φn} = X.

Note that a frame is not necessarily a basis. Specifically,
linear independence is not required. We next define
the following two-index set of functions obtained from
the scaling function φ via translations and dilations as
follows

ψjk(x) �
{

φ(x − k), for j = −1
2j/2ψ(2jx − k), for j ≥ 0

φjk(x) � 2j/2φ(2jx − k).
(2)

The main result from wavelet theory states that the set
of wavelets in (2) forms a frame for L2(R).

Since the domain of interest is Ω rather than R,
we desire a frame for the former. First, it is clear that
ψjk|Ω form a frame for L2(Ω). In fact, the functions
{ψjk | supp ψjk∩Ω �= ∅} form a frame for L2(Ω); see Eq.
(1). This is elaborated upon by the following lemma.

Lemma 1 ([21]) The set of functions defined as
{ψjk | j ≥ −1, k ∈ Ij} where

Ij = {k ∈ Z | 1 − L ≤ k ≤ 2ĵL − 1}, ĵ = max{0, j}
forms a frame for L2(Ω).

In order to apply Galerkin projections, we need to
construct a basis for L2(Ω) (more precisely for H1

∗ (Ω)).
Such a basis can be constructed from Lemma 1 by re-
moving the redundant elements from the frame. Al-
though in this manner one constructs a basis form the
Daubechies’ wavelets themselves, this option may not
always be desirable. Specifically, the lack of regular-
ity of low order Daubechies wavelets renders necessary
the use of higher order wavelets which have larger sup-
ports. Furthermore, one should follow rather complex
modifications to treat boundary conditions. In order
to avoid these difficulties Xu and Shann [21] intro-
duced the anti-derivatives of the Daubechies’ wavelets
as bases. By construction, these are smooth even for
low-order wavelets.

5 Anti-derivatives of Wavelets as Basis

The elements of this section are taken from [21];
we refer the reader to this article for the details of the
construction of the basis. We remind the reader that
the interval of interest is Ω = (0, L); any other interval
can be treated similarly by proper scaling. According
to [21], one starts by defining the functions

Ψjk(x) �
∫ x

0

ψjk(s) ds, 0 ≤ x ≤ L

Φjk(x) �
∫ x

0

φjk(s) ds, 0 ≤ x ≤ L.

For every J ≥ 0 define the following finite-
dimensional subspace of H1

∗ (Ω)

SJ = span {Ψjk | − 1 ≤ j < J, k ∈ Ij}
= span{ΦJk | k ∈ IJ} (3)

The spaces SJ will be the approximation spaces in the
Galerkin projection scheme. In order to get a basis for
SJ we need to eliminate the redundant, linearly depen-
dent elements from the frame.

Lemma 2 (Basis for SJ , [21]) Let the index set Dj

be defined such that

k ∈ Dj ⇔
{

1 − L ≤ k ≤ L − 1, if j = −1
p − L ≤ k ≤ 2jL − p, if j ≥ 0.

Then {Ψjk | − 1 ≤ j < J, k ∈ Dj} and
{ΦJk | k ∈ IJ} are bases of the finite-dimensional
subspace SJ ⊂ H1

∗ (Ω).

For illustration purposes, Figs. 1 and 2 show the
Daubechies wavelets of order p = 2 and their associated
anti-derivatives.
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Figure 1: Daubechies scaling function φ and wavelet ψ
(p = 2).

We are now ready to propose a numerical solution
to the optimal feedback control problem.

6 Optimal Feedback Control

Consider a system modelled by a nonlinear differ-
ential equation which is affine in the control

ẋ = f(x) + g(x)u (4)
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Figure 2: Anti-derivatives of φ and ψ (p = 2).

where x ∈ R
n, f : R

n → R
n, g : R

n → R
n×m, u :

R
n → R

m. Given a control set U , our objective is find
the control action u ∈ U so as to minimize the cost
functional

V (x; u) =
∫ ∞

0

{�(x(t)) + ‖u(x(t))‖2
R}dt

where ‖u‖2
R

�
= uT Ru and R ∈ R

m×m is a positive defi-
nite matrix. That is, V (x∗; u∗) ≤ V (x, u) for all u ∈ U
and x∗(t) is the solution of ẋ = f(x) + g(x)u∗(t). If
we assume that the system (4) with output y �

√
�(x)

is zero state observable, and U = R
m, standard results

from optimal control theory provide the optimal con-
troller in feedback form as

u∗(x) = −1
2
R−1gT (x)

∂V ∗(x)
∂x

, (5)

where for simplicity the asterisk has been dropped from
the state x, and where V ∗ is the solution to the follow-
ing Hamilton-Jacobi-Bellman (HJB) equation

∂V ∗T (x)
∂x

f(x) + �(x)

− 1
4

∂V ∗T (x)
∂x

g(x)R−1g(x)T ∂V ∗(x)
∂x

= 0
(6)

with boundary condition V ∗(0) = 0. In general, it is
difficult to solve the nonlinear pde in (6) in order to
compute V ∗(x) and subsequently u∗(x) from (5). The
algorithm proposed in [1] suggests iterating between the
following two linear equations instead

∂V (i)T

∂x

(
f(x) + g(x)u(i)(x)

)
+ �(x) + ‖u(i)(x)‖2

R = 0 (7)

with initial condition V (i)(0) = 0, and

u(i+1)(x) = −1
2
R−1g(x)T ∂V (i)(x)

∂x
(8)

Equation (7) is called the Generalized Hamilton-Jacobi
Bellman (GHJB) equation in [1].

It was proven in [1] that, under mild assumptions,
the iteration between the GHJB (7) and the control (8)
converges to the solution to the original HJB equation

(6). At the very least, and if an initial stabilizing con-
trol u0(x) is found one can improve the performance of
this controller iteratively using (7)-(8) and approximate
the optimal controller as close as possible. Moreover,
at each iteration step the controller u(i) is stabilizing.

7 The Successive Wavelet-Galerkin
Algorithm (SWGA)

Using the previous results, a numerical solution to
the HJB equation is proposed as follows. At each step
of the SGA algorithm we find an approximate solution
to the GHJB equation by projecting on the subspace
SJ for some scaling index J ≥ 0; see Lemma 2. For
J sufficiently large, the approximation to the GHJB
on SJ , say V (i,J) along with the corresponding control
u(i,J), will approach the optimal solution V ∗ and u∗ as
i → ∞. We do not provide any error estimates of the
algorithm in this paper as the relevant conditions for
convergence along with approximation bounds can be
found in [1] and [21].

To keep the notation and the main ideas as simple
as possible, we consider the following one-dimensional
optimal feedback control problem.

min
u∈R

V (x; u) =
∫ ∞

0

{x2(t) + R u2(x(t))}dt

subject to the dynamics

ẋ = f(x) + g(x)u(x), x(0) = x0, (9)

For convenience, and without loss of generality, the do-
main of interest is chosen to be (0, 1). We will solve this
problem on the domain Ω = (0, L) (L ≥ 1) instead, and
we will then take the restriction of the solution to (0, 1).
A word of caution at this point: Although the desired
equilibrium is a boundary point of the domain, this
choice simplifies the imposition of the boundary condi-
tion V (0) = 0. To cover a complete neighborhood of
the origin, the following procedure has to be repeated
for the interval (−1, 0).

The pair of GHJB equation and the control law is
expressed in the form

∂V (i)(x)
∂x

(
f(x) + g(x)u(i)(x)

)
+ x2 + Ru(i)2(x) = 0 (10)

with initial condition V (i)(0) = 0 and

u(i+1)(x) = − 1
2R

g(x)
∂V (i)(x)

∂x
(11)

It is assumed that there exists an initial stabilizing con-
trol u(0) which is not optimal.

The task is to find the sub-optimal cost on a given
subspace SJ ⊂ H1

∗ (Ω) as well as the corresponding



control strategy. From the method of weighted residu-
als [9], the GHJB equation should satisfy

∫ L

0

(
∂V (i)(x)

∂x

(
f(x) + g(x)u(i)(x)

))
χ(x) dx

= −
∫ L

0

(
x2 + Ru(i)2(x)

)
χ(x) dx

for all members of χ(x) ∈ H1
∗ (Ω). Let X (x) =

[χ1(x), χ2(x) · · · χN (x)]T be the basis vector of the
finite dimensional subspace SJ with length N and let
V

(i)
N (x) =

∑N
k=1 ckχk(x) for some set of constants

[c1 c2 · · · cN ]T . Then the Galerkin projection of V (i)

on SJ is given by

∫ L

0

(
∂V

(i)
N (x)
∂x

(
f(x) + g(x)u(i)(x)

))
χk(x) dx

= −
∫ L

0

(
x2 + Ru(i)2(x)

)
χk(x) dx,

(12)

This provides N linear algebraic equations for the N
unknown coefficients ck, (k = 1, 2, · · · , N). Once
V

(i)
N (x) is obtained, we can improve the control law

at the previous step. Repeating this process leads to
a sub-optimal cost as well as a sub-optimal control law
as close as possible to the optimal ones.

8 Numerical Example

Consider the system (9) with the following param-
eters: R = 1, f(x) = x, g(x) = 1. For this simple
case the optimal value function can be analytically ob-
tained to be V ∗(x) = (1 +

√
2)x2 and consequently

the optimal control law in feedback form is given by
u∗(x) = −(1 +

√
2)x.

The GHJB equation and the corresponding control
law are given by equations (10) and (11). For this exam-
ple, we choose (arbitrarily) to start from the stabilizing
control law u(0)(x) = −5x. Using the SWGA with the
Daubechies wavelets of order p = 2 and for detail levels
J = 0 and J = 1 provides the results shown in Figs. 3
and 4.

These plots show the monotonic convergence of cost
and the controller to the optimal ones.

9 Conclusions

We propose a methodology of solving (approxi-
mately) the HJB equation appearing in the formulation
of optimal control problems. The approach uses an iter-
ative algorithm for solving the GHJB equation. At each
step, the GHJB is solved on a subspace spanned by the
anti-derivatives of the well-known Daubechies wavelet
functions. The introduction of the anti-derivatives al-
lows to work with differentiable basis functions with
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Figure 3: Optimal cost and optimal control via SWGA
(p = 2, J = 0).

small support. The proposed algorithm has been eval-
uated and tested on a simple one-dimensional exam-
ple. Extensions to multi-dimensional problems is a
straightforward (using tensor products), albeit rather
tedious exercise. The computational complexity can
be decreased by using either the structure of the SGA
algorithm [2] or the properties of the wavelets them-
selves [19, Ch. 12].
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