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Abstract

The standard approach for designing ABS systems is to de-
vise a control law to enforce operation at (or close to) the
maximum of the friction force vs. slip curve. This \maxi-
mum friction" approach is based on the assumption that the
friction force generated at the tire/ground interface can be
accurately represented as a (static) function of the slip co-
eÆcient with a distinct maximum. Under this assumption,
in this paper we provide a formal proof of this \maximum
friction" approach using optimal control theory. The opti-
mal control is shown to be singular and can be written in a
state feedback form.

1 Introduction

It has been recognized for many years now that tire fric-
tion models play an important role in accurate prediction
of vehicle behavior. The recent advances in anti-lock brak-
ing technology (ABS systems) make use of the knowledge
of the friction force characteristics. One of the most popu-
lar strategies for minimum distance braking is operation at
the maximum of the friction force. In this paper, we pro-
vide a formal proof of this \maximum friction" result by
formulating the minimum braking distance problem as an
optimal control problem which is subsequently solved using
Pontryagin's Maximum Principle. It is shown that, in the
most general case, the optimal solution involves both sub-
arcs of singular and bang-bang controls. In particular, it
is shown that, under certain mild conditions, the singular
control is the one that keeps the slip rate constant at the
maximum friction value. In accordance with the classical
results of optimal trajectories containing singular subarcs,
the bang-bang controls are used to satisfy the initial and
�nal boundary conditions.

A numerical example is used to calculate a typical optimal
trajectory by solving the associated two-point boundary-
value problem in terms of the state and co-state variables.

2 Tire Friction Models

We consider the longitudinal motion of a 1/4-vehicle wheel
model, shown schematically in Fig. 1. The corresponding
equations of motion can be derived directly from the �gure
as follows

m _v = Fr (1a)

J _! = �rFr + T ; (1b)

wherem is 1/4 of the vehicle mass, r is the wheel radius, J is
the moment of inertia of the wheel and drivetrain assembly,

v is the velocity of the vehicle, and ! is the angular velocity
of the wheel. T is the braking torque (negative as shown),
and Fr is the tire/road friction force (negative as shown).
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Figure 1: One-wheel schematic.
.

The friction force Fr depends on several factors (such as
road conditions, tire characteristics, etc.) but it is primarily
a function of the slip coeÆcient (or longitudinal slip rate) s
de�ned by

s =

� r!�v
v

if v > r!; v 6= 0 braking/deceleration

r!�v
r!

if v < r!; ! 6= 0 driving/acceleration
(2)

Note that s < 0 for braking and s > 0 for driving under the
previous de�nition of the slip. The friction force Fr has been
notoriously diÆcult to model. Lumped [6], distributed [16,
15], static [14, 4] and dynamic models [6, 2, 7, 9] have been
used in the past with various degrees of success.

One of the most widely used tire friction models is the one
due to Pacejka (Pacejka's \magic formula") which gives the
friction as a static map of the slip coeÆcient s as follows�

Fr=Fn = D sin(C arctan(Bs)) (3)

where Fn = mg is the normal force. The constants B;C;D
are chosen to match the experimental data. A typical curve
of friction vs. slip is shown in Fig. 2. It has a distinct
local maximum at s�. At that point maximum friction force
occurs, i.e., Fmax = Fr(s

�).

�This formula is the simplest version of the so-called \magic
formula" and suÆces to demonstrate the main ideas in this pa-
per. More complicated expressions that capture very accurately
experimental data not only of the longitudinal but also of the
lateral and tire-aligning motions can be found, for instance, in
[14, 1].
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Figure 2: Friction force vs. slip coeÆcient.
.

The curve in Fig. 2 is derived under the assumption of
steady-state conditions, i.e, constant v and !. Also, al-
though Eq. (3) gives the friction force only as a function
of the slip coeÆcient, in reality friction depends also on
the vehicle speed, normal force, etc. In all cases however,
the friction curve keeps its generic characteristics, having a
unique maximum for some value of longitudinal slip. Based
on this simple fact, several ABS system design are based on
the reasonable conjecture that optimal (minimum traveled
distance) braking occurs when the friction force operates at
its maximum value (the \maximum friction" assumption).
This conjecture is supported by the rationale that minimum
traveled distance implies maximum deceleration, which in
turn implies maximum friction force. Here we provide a
formal proof of this result using optimal control theory. We
also investigate the exact optimal, including the transition
to and from the maximum friction condition.

3 Optimal Control Formulation

Given the equations (1) the objective is to minimize the
performance index

J =

Z tf

0

v(� ) d� (4)

subject to the following initial and �nal conditions

v(0) = v0; !(0) = !0; v(tf) = !(tf) = 0 (5)

Using x1 = v and x2 = r! Eqs. (1) can then be re-written
in the form

_x1 = f(x) (6a)

_x2 = ��f(x) + u (6b)

where

f(x) =
Fr
m

; � =
mr2

J
; u =

rT

J
(7)

Let x denote the state vector x = [x1 x2]
T .

The Hamiltonian associated with the previous optimal con-
trol problem is given by

H = x1 + �1f(x) + �2u� �2�f(x) (8)

The adjoint system is the given by

_�1 = �1� (�1 � �2�)
@f

@x1
(9a)

_�2 = �(�1 � �2�)
@f

@x2
(9b)

Since the �nal time is not speci�ed, the transversality con-
dition gives

H(tf ) = 0 (10)

Along with the fact that the Hamiltonian is not an explicitly
function of time, the last equation implies that

H(t) = 0 8 t 2 [0; tf ] (11)

along the optimal trajectory.

The optimal control is given by

uopt = argminH(x; �; u) (12)

It is assumed that the control input u is bounded, that is,
any allowable control must satisfy the constraint

umin � u � 0 (13)

From (8) the switching function is

H1 = �2 (14)

and using Eqs. (12)-(13), one obtains the following optimal
control strategy

uopt =

(
umin for H1 > 0
0 for H1 < 0

using for H1 � 0
(15)

Note that the singular control using is used when the switch-
ing function remains zero over a �nite time interval, i.e.,
H1(t) = 0 for t 2 [t1; t2] � [0; tf ]. Since in this interval
the switching function is zero, taking the derivative of H1

yields,

_H1 = _�2 = �(�1 � ��2)
@f

@x2
(16)

On the singular arc �2 � 0, thus

_H1 = ��1
@f

@x2
(17)

Setting the above expression to zero, di�erentiating once
more, and setting the resulting expression to zero, one ob-
tains

�H1 =
@f

@x2
+ (�1 � ��2)

@f

@x1

@f

@x2
� �1

d

dt

�
@f

@x2

�
= 0 (18)

or that
�H1 =

d

dt

�
@f

@x2

�
= 0 (19)

The calculation of the partial derivatives of the friction force
gives

d

dt

�
@f

@x2

�
=

@2f

@x22
_x2 +

@2f

@x1@x2
_x1

=
@2f

@x22
(��f + u) +

@2f

@x1@x2
f (20)

Equation (19) yields

�H1 = �(x)� �(x)using = 0 (21)
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where

�(x) = �
@2f

@x1@x2
f + �

@2f

@x22
f (22a)

�(x) =
@2f

@x22
(22b)

Then, under the implicit assumption that �(x) 6= 0, the
singular control is given by

using =
�(x)

�(x)
(23)

For optimality, the control in Eq. (23) must also satisfy a
local second-order convexity condition, known as the gener-
alized Legendre-Clebsch condition or the Kelley-Contensou
test [10]

@

@u

�
d2qH1

dt2q

�
� 0 (24)

where q is the order of the singular arc. In our case, q = 1
and (24) reduces to testing whether

�(x) � 0 (25)

along the singular part of the trajectory.

4 Computation of Singular Control

The computation of the singular control form Eq. (23) re-
quires the calculation of the partial derivatives in (22). To
proceed with the calculation of the singular control, we need
to consider the explicit expression of the friction force as a
function of x1 and x2. Given the assumption that f is a
function of only the slip coeÆcient s one obtains for the
partial derivatives in (22)

@f

@x1
=

@f

@s

@s

@x1
;

@f

@x2
=

@f

@s

@s

@x2
(26)

and hence

@2f

@x1@x2
=

@2f

@s2
@s

@x1

@s

@x2
+

@f

@s

@2s

@x1@x2
(27a)

@2f

@x22
=

@2f

@s2

�
@s

@x2

�2
+

@f

@s

@2s

@x22
(27b)

Proposition 4.1 On a singular subarc, necessarily

@f

@s
= 0 (28)

Proof. On the singular arc _H1 = 0 and from (17) one ob-

tains that either �1 = 0 or @f
@x2

= 0. If �1 = 0, the adjoint

vector is identically zero on the singular subarc. We arrive
at a contradiction since the adjoint vector cannot vanish
anywhere [12]. Therefore, necessarily @f

@x2
= 0 on the sin-

gular subarc. Since @s
@x2

6= 0 from the de�nition of the slip

coeÆcient the chain rule yields @f
@s

= 0 along the singular
subarc.

Remark 4.1 From the proof of the Proposition it follows
immediately that on a singular subarc necessarily �1 6= 0.
Since @2f=@x22 6= 0 it follows that �(x) 6= 0 and the expres-
sion for the singular control on a singular arc from Eq. (23) is
well-de�ned. In addition, an allowable singular control must

satisfy the constraint in Eq. (13). Nevertheless, whether a
singular control is part of the optimal trajectory depends
also heavily on the problem boundary conditions. Appear-
ance of the singular control in the composite optimal tra-
jectory is not ensured a priori, even in the case the local
optimality of the control law is guaranteed by the satisfac-
tion of Kelley's condition (24). For most automotive ap-
plications, however, the maximum braking torque is large
enough, such that a singular subarc is always part of the
optimal trajectory.

Notice that the expression of the singular control

using =
� @s

@x1
f + � @s

@x2
f

@s
@x2

(29)

is in a purely feedback form (independent of co-states). Us-
ing Proposition 4.1, the partial derivatives in Eq. (27) can
be computed as

@2f

@x1@x2
=

@2f

@s2
@s

@x1

@s

@x2
;

@2f

@x22
=

@2f

@s2

�
@s

@x2

�2
(30)

From the de�nition of the slip coeÆcient for the braking
case, s = x2=x1 � 1, one obtains

@s

@x1
= �

x2
x21

;
@s

@x2
=

1

x1
(31)

Equation (29) then yields

using =
x2f(x1; x2) + x1�f(x1; x2)

x1
(32)

This is the expression of the singular control during brak-
ing. The only assumption used in the derivation of (32) is
that the friction force is a function of the slip coeÆcient
s. It should also be pointed out that the previous analysis
does not hold for x1 = 0. The classical treatment of friction
using static maps breaks down at x1 = 0 (the slip coeÆ-
cient is unde�ned at that point). This is the case when the
wheel is spinning and the vehicle does not move. Although
in a controlled braking case this cannot happen, this friction
model does not work for a vehicle under continuous tran-
sitions between acceleration and deceleration phases or in
very slow friction conditions. This drawback of static fric-
tion models has been recognized in the literature and o�ers
one of the main motivations for developing dynamic friction
models which remain well-de�ned everywhere [2, 3, 7, 6].

5 Maximum Friction Control

Assuming that the friction force is given as a one-to-one
map of the slip coeÆcient s, the control that keeps the fric-
tion force to its maximum value of the f vs. s curve (see
Fig. 2) can be calculated by imposing _s = 0, along with the
conditions

@f

@s
= 0;

@2f

@s2
< 0 (33)

Using the de�nition for the slip coeÆcient, and assuming
that x1 6= 0, one obtains

_s =
x1 _x2 � x2 _x1

x21
(34)

Thus, _s = 0 if and only if

x1 _x2 � x2 _x1 = �x2f(x)� �x1f(x) + x1u = 0 (35)
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or that

ufmax =
x2f(x1; x2) + x1�f(x1; x2)

x1
(36)

which is the same as the expression for the singular control
in Eq. (32), under the additional assumption that @f=@s =
0. Therefore, the singular control using achieves _s = 0 and
@f=@s = 0, i.e., it forces operation at the maximum of the
friction vs. slip curve.

From (27b) the second condition in Eq. (33) implies that

@2f

@x22
< 0 (37)

which is exactly Kelley's condition for optimality of the sin-
gular control.

It is clear that the singular control is constant. It can also
be re-written as

using = s�fmax + (1 + �)fmax (38)

The last expression has the advantage that it does not re-
quire the calculation of the partial derivatives in Eq. (27).
It needs only the maximum value of the friction force fmax,
and the corresponding value of the slip coeÆcient s�.

6 Numerical Example

To illustrate the previous analysis we consider a numerical
example of minimum braking of a vehicle with mass 1000
kg (m = 250 kg). The wheel radius is r = 0:25 m and
the wheel and drivetrain moment of inertia is J = 1 kgm2.
These values correspond to a value of � = 15:625. The
initial conditions are given by x1(0) = x2(0) = 15 m/s.
To avoid the singularity of the friction model at x1 = 0 and
s = 0, the �nal conditions are given by x2(tf ) = 0:1 m/s and
x4(tf ) = 0:099 m/s. The initial conditions correspond to a
value of the slip coeÆcient s(0) = 0 and the �nal conditions
correspond to a value of slip s(tf) = �0:01.

The maximum value of the braking torque is given by
Tmax = 1; 500 Nm which corresponds to umin = �375. For
the Pacejka friction model the values D = 0:7; B = 7; C =
1:6 where used. The maximum normalized friction force can
be computed directly from Eq. (3) and is Fr=Fn = 0:7. The
corresponding slip coeÆcient is s� = �0:2138.

The state and co-state equations are numerically ill-
conditioned. To numerically solve this two-boundary value
optimization problem a special FORTRAN code was written
based on a root-solving Newton method using the subrou-
tine hybrd of the MINPACK library [13]. All calculations
were performed using double precision arithmetic.

The results are shown in Figs. 3-4.

The optimal solution has three subarcs in this case. Dur-
ing most of the trajectory a singular control law is used
to achieve maximum friction force. This is expected from
the previous analysis. The initial and �nal bang subarcs
take care of the required boundary conditions (slip not at
the maximum friction force). The distance traveled before
complete stop is J = 16:382 m. The total time to stop the
vehicle under this applied braking torque pro�le (shown on
the bottom of Fig. 4) is tf = 2:17 sec. The initial an �nal
bang subarcs take place in a very short time interval. The
duration of the initial and �nal subarcs are approximately
0.0123 and 3 � 10�4 seconds, respectively. That is, for all
practical purposes, the initial and �nal bang subarcs can be
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Figure 3: State and co-state time histories.
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Figure 4: Switching function and braking torque history.

replaced by two impulses at the initial and �nal parts of the
trajectory.

Figure 3 shows the time histories of the states and the co-
states. The angular velocity of the wheel x2 and the corre-
sponding co-state �2 exhibit a very fast transient during the
initial part of the trajectory, as expected from the optimal
torque pro�le. The optimality of the trajectory is veri�ed
by the time history of the switching function �2 in Fig. 3. A
more detailed depiction of the switching function just before
the entry to the singular subarc in shown on the top plot of
Fig. 4. Finally, Fig. 5 shows the friction force and the slip
coeÆcient history.

7 Conclusion

We have shown that the optimal braking strategy for a
wheeled vehicle is to operate at the maximum point of the
friction/slip curve. This strategy has been used extensively
in the past in the design of ABS systems. One of the in-
teresting results of our analysis is that the optimal \max-
friction" control is singular. Maximum torque control is
used to match the boundary conditions. The total opti-
mal trajectory is therefore composed of a sequence of bang-
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Figure 5: Friction force and slip coeÆcient time histories.

bang and singular arcs. For typical automotive applications,
where the applied torque is high, the bang-bang subarcs can
be safely approximated by impulses to achieve the speci�ed
boundary conditions of the slip.

The major drawbacks of the previous analysis are: First, it
is based on the assumption that the friction force between
the tire and the ground can be accurately described as a
static relation in terms of the slip coeÆcient. In fact, it is
well-known that transient e�ects can be important. This
drawback can be addressed by incorporating recently devel-
oped dynamic friction models [6]. According to these results
the friction force Fr is the output of a nonlinear �lter which
has as input the relative velocity vr = x2�x1. Speci�cally,

_z = vr � �0
jvr j

g(vr)
z (39a)

Fr = (�0z + �1 _z + �2vr)Fn (39b)

where �0, �1 are constants and z is the internal friction
state. The function g(vr) is given by

g(vr) = �c + (�s � �c)e
�jvr=vsj

1

2

(40)

where �c; �s and vs are some constants. This tire friction
model is based on the point LuGre friction model introduced
in [5]. For more details on the tire friction model (39)-(40)
refer to [6].

The static friction approach also requires prior knowledge of
the maximum friction force and the corresponding optimal
slip, which may not be readily known in a realistic envi-
ronment of changing road and tire conditions. This draw-
back can be avoided, however, by implementing this optimal
strategy via an \extremum seeking" control scheme, much
in the same spirit as in Refs. [8] and [11].
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