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Feasible Trajectory Generation for

Underactuated Spacecraft Using Di�erential

Flatness

Panagiotis Tsiotras�
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We consider the problem of feasible trajectory generation of an underactuated axi-

symmetric spacecraft subject to two external torques acting on the plane normal to the

symmetry axis. We derive the condition that must be satis�ed by an attitude history in

order to be a feasible trajectory. We then propose a methodology to generate trajectories

satisfying this condition. Our approach makes use of the well-known atness of the corre-

sponding di�erential equations. We emphasize the importance of being able to generate

these trajectories on-line and with minimal o�-line intervention. Feasible trajectories can

later be used as reference trajectories for tracking problems for underactuated spacecraft.

Introduction

The problem of stabilization of an underactuated
spacecraft has been addressed recently in the litera-
ture.1{7 Several techniques have been proposed both
for the axi-symmetric, as well as the non-symmetric
case. The stabilization problem for the axi-symmetric
case can be considered solved, although there is still
work to be done in addressing robustness questions.
(See Ref. 8 for a discussion on robustness for the
angular velocity stabilization problem of an under-
actuated rigid body.) The stabilization problem for
a non-symmetric spacecraft turned out to be much
more challenging, but �nally several approaches were
proposed with much success.4, 5, 9 Nonetheless, these
approaches are local and no globally stabilizing control
law has been reported in the literature, as far as the
author knows.

In a related avenue of research, Ref. 10 addressed
and solved the (global) tracking problem for the case
of an axi-symmetric spacecraft using two controls.
The results in Ref. 10 provide bounded controllers for
tracking both 3-axis and 1-axis attitude reorientations.
A key assumption made in Ref. 10 (and in most tra-
jectory tracking literature, for that matter) is that the
trajectory to be tracked is a feasible one. That is, there
exists a control input in the space of admissible con-
trols such that, with the correct initial conditions, the
output of the system is able to track exactly the refer-
ence trajectory. This is typically achieved by making
the a priori assumption that the (reference) trajectory
to be tracked is generated by an exosystem, which is
an exact copy of the plant itself. For the case of left-
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invertible plants it is relatively easy to �nd the state
and input history that correspond to a given output
history. However, even in this case, given an initial
and a �nal point in the output space, it is not clear
at all how one can generate an output trajectory that
belongs in the system output function space.

In this paper we address the following problem:
Given an initial and a �nal orientation of an un-
deractuated rigid spacecraft (the precise de�nition of
\underactuation" to be given shortly), �nd an angular
velocity history such that, under the inuence of this
angular velocity history, the body will move from the
initial orientation to the �nal orientation in a given
period of time. In order to solve this problem, we
�rst derive a necessary and su�cient condition that
must be satis�ed by all feasible trajectories. We then
use the property of di�erential atness,11, 12 satis�ed
by the system di�erential equations, in order to derive
trajectories in the at output space. These trajectories
are then mapped back to the state space (and eventu-
ally to the angular velocity space) to provide feasible
trajectories. These feasible trajectories can then be
used as reference trajectories for the tracking problem
of an axisymmetric spacecraft with two control inputs
studied in Ref. 10.

It should be pointed out that although the prop-
erty of di�erential atness for the underactuated rigid
body problem has been known for some time13 no ac-
tual results have appeared in the literature dealing
speci�cally with this problem. We also emphasize that
we give special attention to the problem of singularity
avoidance, often encountered when designing trajecto-
ries in the at output space. Namely, the map from
the at output space to the state space may not be
de�ned at some points. In this paper, we propose
a parameterization of the at outputs such that the
transformation to the state and input space remains
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well-de�ned. This is achieved by taking advantage of
the non-uniqueness (multivalued map) of the at out-
puts in the at output space (S1� S1). In addition,
the design of trajectories in the at output space can
be completely automated, i.e., without intervention by
the user.
A major motivation for insisting for a globally non-

singular, inverse mapping with minimal (or not at all)
supervision, is to be able to implement the proposed
algorithm on-board the spacecraft. This is a very ap-
pealing property of the proposed algorithm since, in
general, the design of trajectories in the at output
space (although a completely geometric problem) re-
quires some amount of o�-line (i.e., user) intervention.
Our philosophy of \minimal user intervention" dur-
ing the design of the feasible trajectories agrees with
the current trend for \smarter" autonomous spacecraft
with very little ground-spacecraft communication and
control.
As in Refs. 10 and 6, we make use of the kine-

matic attitude description developed in Refs. 14 and
15. This attitude description allows one to isolate and
describe the motion of the (underactuated) symmetry
axis of the body using a single complex variable. The
whole control design is performed at the kinematics
level, (i.e., with the angular velocities assumed to be
the control inputs), since it is a straightforward task
to \backstep" the kinematic control laws to dynamic
ones.6

Numerical examples at the end of the paper demon-
strate the theoretical results.

Attitude Equations

In this paper we use the attitude description de-
scribed in Refs. 6,14. According to the results of Ref. 6
the relative orientation between two reference frames
can be represented by two successive rotations. The
�rst rotation is about the inertial î3-axis at an angle z.
The second rotation is about the unit vector

ĥ=

�
w+ w̄
2jwj

�
î01+

�
i (w̄�w)

2jwj
�

î02 (1)

and has magnitude

θ = arccos

�
1�jwj2
1+ jwj2

�
(2)

In Eq. (1) î0 = (î01; î
0

2; î
0

3) is the intermediate reference
frame resulting from the rotation z about the iner-
tial î3-axis. The situation is depicted in Fig. 1, where
(a;b;c) denote the coordinates of the unit vector î03 in

the body frame, î03= ab̂1+bb̂2+cb̂3. It can be shown
14

that the location of the body b̂3-axis in the î0 frame is
also determined by a;b;c from b̂3 = �aî01� bî02 + cî03
(Fig. 1). With this notation, the complex coordinate
w is de�ned by

w= w1+ i w2 =
b� i a
1+c

(3)

We note here that in Eqs. (1) and (3) i =
p�1, bar

denotes the complex conjugate, and jwj2 =ww̄ denotes
the absolute value of the complex number w2 C . Con-
versely, from w one can compute (a;b;c) from

a= i
w� w̄

1+ jwj2 ; b=
w+ w̄

1+ jwj2 ; c=
1�jwj2
1+ jwj2 (4)

z

�a
�b

c
θ

î01

î02

î3= î03

b̂3

ĥ

Fig. 1 Attitude description in terms of (w;z) coor-
dinates.

The kinematic di�erential equations in terms of w
and z are given by6

ẇ = �ıω3w+
ω
2
+

ω̄
2

w2 (5a)

ż = ω3+ Im(ωw̄) (5b)

In this paper we assume that only the angular ve-
locity ω (equivalently, ω1 and ω2) can be manipulated.
The angular velocity component about the body b̂3-
axis ω3 cannot be changed due to, say, a thruster
failure. Speci�cally, for an axi-symmetric body about
the body b̂3-axis with no torque component about this
axis, ω3 remains constant for all t � 0. In this case,
three-axis stabilization and pointing is possible only
if, in addition, ω3 � 0. (Of course, stabilization and
inertial pointing of the symmetry axis is still possi-
ble.1, 16)
Letting ω3 = 0, the kinematic equations thus be-

come

ẇ =
ω
2
+

ω̄
2

w2 (6a)

ż = Im(ωw̄) (6b)

Note that the corresponding dynamic equations are
simply

ω̇ = u (7)

where u= u1+ i u2 and ui (i = 1;2) is the torque about
the ith body axis. Given a desired angular velocity
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history ωd(t), a simple tracking control law at the dy-
namic level is then given by

u=�κ(ω�ωd)+ ω̇d (8)

where κ > 0. The previous equation implies that any
acceptable angular velocity history ωd at the kine-
matic level must be bounded and must have a bounded
derivative.

Feasible trajectory generation

In Ref. 10 the tracking problem for the system in
Eq. (6) was addressed. There, it was assumed that
the reference trajectory is given as the output of a dy-
namical system with the same nonlinear structure as
the original system. In Ref. 10 this exosystem was
called the \virtual" spacecraft. The advantage of this
approach was that one could guarantee a priori that
the trajectories of this exosystem are feasible and per-
fect tracking can be achieved. That is, given some
reference trajectories w(t) and z(t) one could guaran-
tee the existence of an angular velocity command ω(t)
such that Eqs. (6) are satis�ed. In general, it is not
true that, given some arbitrary functions of time w(t)
and z(t), there exists such a command ω(t).
To see this, consider a given attitude history, ex-

pressed in terms of the functions w(t) and z(t) for t � 0.
If these functions correspond to a feasible trajectory,
then one could solve Eq. (6) for ω(t) from

ω =
2

1�jwj4 (ẇ� ˙̄ww2) (9)

at least whenever jwj 6= 1. The last equation implies
the constraint

ż(1�jwj2)�2Im(ẇw̄) = 0 (10)

which, in general, does not hold for arbitrary functions
of time w(t) and z(t).
The previous equation is thus a necessary and su�-

cient condition that must be satis�ed by any feasible
trajectory (w(t);z(t)).
In this section we develop an approach to generate

feasible trajectories for the system in Eq. (6). These
trajectories, can then be used as reference trajecto-
ries for the tracking problem. In particular, given an
initial point (w0;z0), a �nal point (wf ;zf ) and a time
t f , we seek time functions w(t) and z(t), de�ned over
the interval 0� t � t f , such that (w(0);z(0)) = (w0;z0),
(w(t f );z(t f )) = (wf ;zf ) and Eq. (10) is satis�ed for all
0� t � t f . We call such trajectories feasible since they
ensure the existence of a function ω(t) such that sys-
tem in Eq. (6) is satis�ed. Such an ω(t) can be found
by Eq. (17) below. The functions w(t) and z(t) are
then the solutions of the system (6) with input ω(t),
initial conditions (w0;z0), and �nal conditions (wf ;zf ).

Di�erential Flatness and Flat Outputs

To solve the feasible trajectory generation problem,
we will use the notion of di�erential atness.11, 12 Let
the system

ẋ= f (x;u) (11)

where x2 Rn is the state, and u2 Rm are the control
variables. This system is di�erentially at if one can
�nd outputs y2Rm (the same as the number of inputs)
of the form

y= y(x;u; u̇; : : : ;u(p)) (12)

such that all states and inputs of the system can be
written as algebraic functions of these at outputs and
their derivatives. In other words, equation (12) can be
inverted, such that

x = x(y; ẏ; : : : ;y(q)) (13)

u = u(y; ẏ; : : : ;y(q)) (14)

From the previous equations it becomes evident why
at outputs play a signi�cant role in trajectory genera-
tion problems. If the at output history y(t) is known,
then (13) and (14) can be used to compute the corre-
sponding state and input trajectories. Every path in
the at output space is mapped to a feasible trajec-
tory and thus, the trajectory generation problem for
at systems is trivial.
Di�erentially at systems are extremely nice since,

they are equivalent� to an algebraic system, i.e., a
system without dynamics. The downside of this ap-
proach is that most (nonlinear) systems are not at.
Also, to date, there does not exist a systematic way for
�nding the at outputs† (if they exist), although very
often they have intrinsic physical signi�cance. An ad-
ditional problem may arise if the transformation from
the at output space to the state space is singular.
In this paper we address all these problems for the
underactuated spacecraft problem, and propose a sim-
ple parameterization of trajectories in the at output
space that satis�es all the constraints and avoids any
singularities.

Flat Outputs for the Attitude Problem

In this section we show that the system (15) sub-
ject to the control inputs ω1 and ω2 possesses two at

�This type of equivalence is called Lie-B�acklund equivalence
and it is quite well-known in physics. Two systems are equiv-
alent in the Lie-B�acklund sense if any variable of one system
may expressed as a function of the variables of the other system
and of a �nite number of their time derivatives. One system
can then be transformed to the other via endogenous feedback.
This transformation does not necessarily preserve state dimen-
sion. See also Ref. 17.

†Except the case of con�guration at Lagrangian systems
with n degrees of freedom and n�1 controls, where a complete
characterization exists. See, Ref. 18.
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outputs. These outputs, denoted below by y1 and y2,
can be used to solve the feasible trajectory generation
problem for the underactuated spacecraft.
From now on, and for clarity of exposition, we switch

from complex to real number notation. The kinematic
model of an underactuated rigid body is then described
by

ẇ1 =
1
2
(1+w2

1�w2
2)ω1+w1w2ω2 (15a)

ẇ2 =
1
2
(1�w2

1+w2
2)ω2+w1w2ω1 (15b)

ż = w1ω2�w2ω1 (15c)

or, compactly, by

2
4ẇ1

ẇ2

ż

3
5 =

2
4

1
2(1+w2

1�w2
2) w1w2

w1w2
1
2(1�w2

1+w2
2)

�w2 w1

3
5�ω1

ω1

�

= F(w)

�
ω1

ω1

�
(16)

If [ẇ1 ẇ2 ż]T is in the range of F(w), we can solve the
previous equation uniquely for the angular velocities

�
ω1

ω2

�
=

�
FT(w)F(w)

��1
FT(w)

2
4ẇ1

ẇ2

ż

3
5

=
4

(1+w2
1+w2

2)
2
�

�1
2(1+w2

1�w2
2) w1w2 �w2

w1w2
1
2(1�w2

1+w2
2) w1

�24ẇ1

ẇ2

ż

3
5

(17)

Note that in case [ẇ1 ẇ2 ż]T is not in the range of
F(w), the previous equation solves the minimum dis-
tance problem to the range of F(w).
We now return to the characterization of the at

outputs of system (15).

Proposition 1 The kinematic model of an underac-
tuated rigid body described by Eqs. (15) is di�erentially
at.

Proof. Consider the following two functions

y1 = 2 arctan

�
w2

w1

�
+z (18a)

y2 = z (18b)

We claim that these are at outputs for the system in
Eqs. (15).
First note that, trivially, z can be written as a func-

tion of y1 and y2. Di�erentiating Eq. (18a) we get

ẏ1 =
1�jwj2
jwj2 ẏ2+ ẏ2 =

ẏ2

jwj2 (19)

or that,

jwj2 = ẏ2

ẏ1
(20)

Moreover, we have that

arctan

�
w2

w1

�
=

y1�y2

2
(21)

The previous two equations together imply that

w1 =

r
ẏ2

ẏ1
cos

�
y1�y2

2

�
(22a)

w2 =

r
ẏ2

ẏ1
sin

�
y1�y2

2

�
(22b)

which, together with equation,

z= y2 (23)

provide the desired result.
We have shown that w1;w2 and z can be written as

algebraic functions of y1;y2 and their time derivatives.
By virtue of Eq. (17) ω1 and ω2 can also be writ-
ten as functions of y1;y2 and their time derivatives.
Therefore, y1 and y2 are at outputs for the system in
Eqs. (15), as claimed.

The initial and �nal points of the trajectory corre-
spond to the points

y10 = 2arctan

�
w20

w10

�
+z0; y20= z (24a)

y1 f = 2arctan

�
w2 f

w1 f

�
+zf ; y2 f = zf (24b)

in the y1� y2 plane, respectively. We can now con-
struct paths in the y1�y2 plane connecting the points
(y10;y20) and (y1 f ;y2 f ) and map them back to the w�z
state space using Eqs. (22) and (18b). We may choose
any path we want, as long as ẏ1 ẏ2 � 0. One way to
achieve this is as follows: Assume a linear dependence
of y1 with time

y1(t) = y10+
t
t f
(y1 f �y10) (25)

and then parameterize y2 as a cubic function of y1

y2 = a0+a1y1+a2y2
1+a3y3

1 (26)

Because the output y2 is parameterized in terms of y1,
we call y1 the \independent" at output. The previous
parameterization implies

y2(0) = y2(y1(0))

= a0+a1y1(0)+a2y2
1(0)+a3y3

1(0) (27a)

y2(t f ) = y2(y1(t f ))

= a0+a1y1(t f )+a2y2
1(t f )+a3y3

1(t f ) (27b)
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From Eq. (20), the boundary conditions at t = 0 and
t = t f also imply the extra constraints

dy2

dy1
(0) = a1+2a2y1(0)+3a3y

2
1(0)

= w2
10+w2

20= jw(0)j2 (28a)

dy2

dy1
(t f ) = a1+2a2y1(t f )+3a3y

2
1(t f )

= w2
1 f +w2

2 f = jw(t f )j2 (28b)

We have a linear system of four equations (27)-(28) in
the four unknowns a0;a1;a2;a3. In order to ensure that
y02(y1) � 0 we take advantage of the ambiguity of the
arctan(�) function in Eqs. (18). First, and without loss
of generality we assume that y1 f > y10 and y2 f � y20.
Otherwise, we can add or subtract multiples of 4π to
yi0 and/or yi f (i = 1;2) to make sure that the previous
inequalities hold.

From Eq. (26) we have that y02(y1) = 0 whenever

y�1 =
�a2�

q
a2

2�3a1a3

3a3
(29)

By adding multiples of 4π to y2 f one can ensure
that y�1 62 (y10;y1 f ). Since y02(y1)(0) � 0 it follows that
y02(y1)(t)� 0 for all t 2 [0; t f ]

‡.

Remark 1 One can choose many di�erent paths con-
necting (y10;y20) and (y1 f ;y2 f ) in the y1� y2 plane,
as long as they satisfy the boundary conditions in
Eqs. (27) and (28). A cubic polynomial is the low-
est degree polynomial which satis�es the four boundary
conditions in Eqs. (27)-(28). Since the cubic polyno-
mial is completely determined by these boundary con-
ditions, there is no extra freedom to satisfy the slope
constraint y02(y1)� 0. One could have chosen a higher
order polynomial and use the extra degrees of freedom
to satisfy the slope constraint. However, this is a task
with no easy analytical answer. Here we have chosen
the simplest case of a cubic polynomial, and we have
addressed the slope restriction by taking advantage of
the fact that multiples or 2π correspond to the same
angle (i.e., the same physical orientation of the body).

Once the time functions y1(t) and y2(t) are known
from the algorithm above, one can compute ẇ1 and ẇ2

‡A proof of this result is shown in the appendix.

and ż from

ẇ1 =
1
2

�
ẏ1

ẏ2

� 1
2
�

ÿ2

ẏ1
� ẏ2ÿ1

ẏ2
1

�
cos

�
y1�y2

2

�

�
�

ẏ2

ẏ1

� 1
2

sin

�
y1�y2

2

�
ẏ1� ẏ2

2
(30a)

ẇ2 =
1
2

�
ẏ1

ẏ2

� 1
2
�

ÿ2

ẏ1
� ẏ2ÿ1

ẏ2
1

�
sin

�
y1�y2

2

�

+

�
ẏ2

ẏ1

� 1
2

cos

�
y1�y2

2

�
ẏ1� ẏ2

2
(30b)

ż = ẏ2 (30c)

where ẏ1 6= 0 because of Eq. (25). The previous ap-
proach guarantees that the vector [ẇ1 ẇ2 ż]T is in the
range of F(w) for every t 2 [0; t f ]. Therefore, the cor-
responding angular velocities can be computed from
Eq. (17).
Equations (30) have a potential singularity at ẏ2= 0.

By the previous discussion it is clear that this can
happen only at the boundary points of the interval
[0; t f ]. Indeed, if either jw(0)j = 0 or jw(t f )j = 0, then
from Eq. (20) we must have necessarily ẏ2(0) = 0 or
ẏ2(t f ) = 0, respectively. From Eqs. (30) it is clear that
in such a case we need to impose the additional con-
straint that ÿ2(0) = 0 or ÿ2(t f ) = 0.
Let us �rst consider the case when jw(0)j = 0. A

simple calculation shows that

ÿ2(0) = (2a2+6a3y1(0))ẏ2
1(0) (31)

We can therefore guarantee that ÿ2(0) = 0 by choosing
a function y1(t) such that ẏ1(0) = 0. For instance, we
can choose

y1(t) = y10+

�
t
t f

�2

(y1 f �y10) (32)

Similarly, for the case when jw(t f )j= 0we can choose
the following time parameterization for y1

y1(t) = y1 f +

�
t� t f

t f

�2

(y10�y1 f ) (33)

which guarantees that ẏ1(t f ) = 0 and hence from
Eq. (31) also that ÿ2(t f ) = 0.
Finally, for the case when the initial and �nal condi-

tions are such that jw(0)j= jw(t f )j= 0, we can choose
the following (cubic) parameterization of y1

y1(t) = 2(y10�y1 f )

�
t
t f

�3

�3(y10�y1 f )

�
t
t f

�2

+y10

(34)

This expression guarantees that ẏ1(0) = ẏ1(t f ) = 0,
hence also that ÿ2(0) = ÿ2(t f ) = 0, as required. Notice
that the parameterizations of y1(t) given in Eqs. (32),
(33) and (34) ensure that ẏ1(t) 6= 0 for all t 2 (0; t f ).
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Summarizing, we have shown that a linear param-
eterization for \independent" at output y1(t) along
with a cubic parameterization of y2 in terms of y1 can
be used to solve the trajectory generation problem in
the at output space for the majority of cases. With a
linear parameterization of y1, singularities may occur
at the initial and/or �nal points, if jwj = 0 at these
points. If this is the case, a quadratic or cubic pa-
rameterization of y1 can be used to circumvent the
singularity problem at the boundary points.

Numerical example

We demonstrate the algorithm for automatic fea-
sible trajectory generation developed in the previous
section. We assume that the initial and �nal condi-
tions are given by (w1(0);w2(0);z(0)) = (1;2;0:5) and
(w1(t f );w2(t f );z(t f )) = (0;�1;1:25), respectively. We
also choose t f = 20 sec. The corresponding initial and
�nal points in the y1�y2-plane of the at outputs are
calculated by the proposed algorithm as (y10;y20) =
(2:71;0:5) and (y1 f ;y2 f ) = (10:67;13:81). Notice that
in this case y1 f = 2atan[w2(t f )=w1(t f )]+ z(t f )+4π and
y2(t f )= 4π+z(t f ). Figure 2(a) shows the trajectories in
the w�z space, and Fig. 2(b) shows the corresponding
angular velocity history which generates these trajec-
tories. In Fig. 2(a) there are actually plotted two
separate sets of trajectories. One set is generated di-
rectly from the at outputs, i.e., from Eqs. (22) and
(23), and the other set is generated directly from the
dynamical equations (6) subject to the angular veloc-
ity history in Fig. 2(b). The two sets are almost exact
so there is no visible discrepancy in Fig. 2(a). Figure 3
shows the corresponding path in the at output space.
Consider now the case when (w1(t f );w2(t f );z(t f )) =

(0;0;1:25). The initial conditions remain the same as
in the previous case. If we use the linear parameteriza-
tion for y1 given in Eq. (25) we get the results in Fig. 4.
The dashed lines in Fig. 4(a) correspond to the trajec-
tories as given directly by the at outputs, and the
solid lines correspond to the trajectories as given by
integrating the system of di�erential equations using
the angular velocity history in Fig. 4(b). Notice that
although the trajectory generated by the at output
approach matches very closely the one generated by
the dynamical system, the angular velocity history re-
quires large values at the �nal point. In particular,
because of the singularity at that point, we get that
limt!t f ω̇(t) = ∞.
By using the quadratic parameterization of y1(t) in

Eq. (33) we get the results in Fig. 5. The trajectories
are essentially the same with the previous ones (since
the path in the at output space remains the same) but
the angular velocity history is much better behaved.
In particular, the singularity at �nal time has been
eliminated completely.
Finally, we consider the case when

(w1(0);w2(0);z(0)) = (0;0;1:5) and
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Fig. 2 Feasible trajectory generation.
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Fig. 3 Corresponding trajectories in the at out-
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a) Trajectories generated using Eq. (25).
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Fig. 4 Feasible trajectory generation for jw(t f )j= 0.

(w1(t f );w2(t f );z(t f )) = (0;0;0). The trajectories
using the linear parameterization are shown in
Fig. 6(a) and the corresponding control inputs are
shown in Fig. 6(b). The dashed lines in Fig. 6(a)
correspond to the trajectories as given directly by
the at outputs, and the solid lines correspond
to the trajectories as given by the integrating the
system of di�erential equations using the angular
velocity history in Fig. 6(b). Notice that although the
trajectory generated by the at output approach can
be generated very closely by the dynamical system,
the angular velocity history requires large values at
both the initial and �nal points.

By using the cubic parameterization of y1(t) in
Eq. (34) we get the results in Fig. 7. The trajectories
are essentially the same with the previous ones, but
the angular velocity history is much better behaved,
especially at the initial and �nal time.
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a) Trajectories generated using Eq. (33).
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Fig. 5 Feasible trajectory generation for jw(t f )j= 0.

Robustness to Small Asymmetries

The results presented thus far are valid assuming
that ω3 � 0. This can only occur when the initial
condition ω3(0) is zero and the body is completely ax-
isymmetric about the b̂3 axis. This is a restrictive and
rather unrealistic assumption. If the initial condition
ω3(0) 6= 0 or if the body is \almost" axi-symmetric,
then a small residual value ω3 always acts on the sys-
tem. The di�erential equations in this case can be
written as

ω̇3 = eω1ω2 (35a)

ẇ1 = ω3w2+
1
2
(1+w2

1�w2
2)ω1+w1w2ω2 (35b)

ẇ2 = �ω3w1+
1
2
(1�w2

1+w2
2)ω2+w1w2ω1 (35c)

ż = ω3+w1ω2�w2ω1 (35d)

where e<< 1 is a constant which depends on the prin-
ciple moments of inertia of the body, and captures the
e�ect of the asymmetry about the b̂3 axis. If e= 0 the
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a) Trajectories generated using Eq. (25).
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Fig. 6 Feasible trajectory generation for jw(0)j =
jw(t f )j= 0.

body is axi-symmetric about the b̂3 axis.

Whether the system in Eq. (35) is at is an
open problem. Here we will investigate via nu-
merical simulations the e�ect of small values of ω3

on the trajectory generation approach developed in
the previous sections. To this end, let e= 0:1 and
ω3(0) = 0. The initial and �nal conditions for w
and z are given as (w1(0);w2(0);z(0)) = (1;2;0:5) and
(w1(t f );w2(t f );z(t f )) = (0;�1;1:25). The results of the
simulations are shown in Fig. 8(a). One should com-
pare these results with the corresponding ones for the
axi-symmetric case in Fig. 2(a). The dashed lines
denote the nominal (ideal) trajectory that should be
followed, and the solid lines indicate the actual tra-
jectory. Figure 8(b) shows the variation of ω3 with
time.

In the second case we let e= 0 and ω3(0) = 0:1.
In this case, although the body is axi-symmetric,
the component ω3 is nonzero (constant) because of
nonzero initial conditions. The results of the simu-
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a) Trajectories generated using Eq. (34).
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Fig. 7 Feasible trajectory generation for jw(0)j =
jw(t f )j= 0.

lations are shown in Fig. 9.

The third case combines the e�ects of non-symmetry
and non-zero initial conditions in ω3. We let e= 0:1
and ω3(0) = 0:1. The results are shown in Fig. 10(a).
Figure 10(b) shows the corresponding variation of ω3

with time.

These simulations show that small asymmetries or
small non-zero initial conditions do not have a catas-
trophic e�ect on the �nal maneuver orientation. Nev-
ertheless, the errors are non-negligible for accurate
precision targeting and pointing maneuvers. It is
therefore imperative to develop similar algorithms for
the general (non axi-symmetric) underactuated rigid
body case. In light of the absence of a characteriza-
tion of the at outputs (if they exist) this case seems
to be a very challenging one, and it is left to future
investigation.

Nevertheless, an ad hoc procedure that seems to be
working well for small asymmetries is to correct the
values of ẇ1; ẇ2; ż in Eq. (17) by subtracting the cor-
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a) Trajectories in the (w,z) space.
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Fig. 8 Feasible trajectory generation for nearly
axi-symmetric case (e= 0:1) and ω3(0) = 0.
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Fig. 9 Feasible trajectory generation for axi-
symmetric case (e= 0) and nonzero initial condi-
tions in ω3 (ω3(0) = 0:1).
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a) Trajectories in the (w,z) space.
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Fig. 10 Feasible trajectory generation for nearly
axi-symmetric body (e = 0:1) and nonzero initial
conditions in ω3 (ω3(0) = 0:1).

responding terms due to ω3 from the lhs of Eq. (35b)-
(35d). Figures 11(a) and 11(b) show the simulations
using this correction for e= 0:2 and ω3(0) = 0.

Conclusions

In this paper we provide an algorithm for solving the
problem of feasible trajectory generation for an under-
actuated rigid spacecraft. The spacecraft is underac-
tuated in the sense that there is no control authority
along one of its principal axis. An example of this sit-
uation is the case of an axi-symmetric rigid spacecraft
with a thruster failure along the symmetry axis.
We derive the necessary and su�cient conditions

that must be satis�ed for a state trajectory to be fea-
sible. We show that the system is di�erentially at
by deriving the corresponding at outputs. The fea-
sible trajectory design is then performed in the at
output space. We �nally propose a simple methodol-
ogy for designing trajectories in the at output space
that are everywhere non-singular. Singularities man-
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a) Trajectories in the (w,z) space without correction.
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b) Trajectories in the (w,z) space with correction.

Fig. 11 Feasible trajectory generation for nearly
axi-symmetric body (e= 0:2) and ω3(0) = 0. Original
and ad hoc correction results.

ifest themselves as points where the derivative of the
angular velocity history goes to in�nity. This can oc-
cur at the initial and �nal points of the trajectory. The
proposed approach avoids any singularities by simple
time-reparameterization of one of the at outputs (the
\independent" at output.) Singularity avoidance is
very important because any angular velocity history
must be implemented through appropriate torque his-
tories. It is therefore imperative to ensure that any
angular velocity used to generate the feasible trajecto-
ries is bounded and has a bounded derivative.
The feasible trajectories generated by the proposed

approach can be used as reference trajectories for
tracking problems. The whole approach can be read-
ily automated and can thus be used for autonomous,
on-line trajectory generation and tracking.
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Appendix

Consider the curve in the y1�y2 plane given by

y2 = a0+a1y1+a2y2
1+a3y

2
1 (A.1)

where a0;a1;a2;a3 are given by the solution to the fol-
lowing linear set of equations

2
664

1 y10 y2
10 y3

10
1 y1 f y2

1 f y3
1 f

0 1 2y10 3y2
10

0 1 2y1 f 3y2
1 f

3
775
2
664

a0

a1

a2

a4

3
775=

2
664

y20

y2 f

w2
0

w2
f

3
775 ; (A.2)

and where y10;y1 f ;y20;w2
0 and w2

f are positive con-
stants, with y1 f > y10.
We will show that, under these conditions, there al-

ways exist a y2 f large enough (positive), such that

dy2

dy1
� 0 (A.3)

To this end, calculation of the previous derivative
gives

y02 = a1+2a2y1+3a3y
2
1 (A.4)

Clearly,

miny02 = y2(y
�

1) = a1� a2
2

3a3
(A.5)

where y�1 as in Eq. (29). Since by assumption, y02(y10)>
0 and y02(y1 f ) > 0, then Eq. (A.3) holds if and only if
a1�a2=3a3� 0.
A tedious but straightforward calculation shows

that a1, a2 and a3 are linear functions of y2 f given
by

a1 = �6
y10y1 f

(y1 f �y10)3
y2 f +c1 (A.6a)

a2 = 3
y10+y1 f

(y1 f �y10)3
y2 f +c2 (A.6b)

a3 = �2
1

(y1 f �y10)3
y2 f +c3 (A.6c)

where c1;c2 and c3 are constants independent of y2 f .
Substituting Eqs. (A.6) in the rhs of Eq. (A.5) and

for large enough y2 f , one obtains that

a1� a2
2

3a3
� 3

2(y1 f �y10)
y2 f +c (A.7)

where c is a constant independent of y2 f .
Since by assumption y1 f �y10> 0, the last equation

shows that for y2 f large enough we have that y02(y1)� 0
and the proof is complete.
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