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Abstract
We develop tracking control laws for a rigid spacecraft
using both thrusters and momentum wheels. The model
studied comprises a rigid body with external thrusters
and with N rigid axisymmetric wheels controlled by ax-
ial torques. The thruster torques and the axial motor
torques are the controls used to track given attitude mo-
tions. Specifically, the thruster torques are used to imple-
ment the coarse tracking, and the momentum wheels are
used to provide the fine control.

Introduction

In this paper, we develop a linear feedback controller
that asymptotically stabilizes the motion of an N-rotor
gyrostat. The controller is a logical extension to the con-
trollers developed in Ref. 5.

Using a body-fixed reference frame, the rotational
equations of motion for a rigid body with internal mo-
mentum wheels may be expressed as

ḣ � h�J�1�h�Aha��ge (1)

ḣa � ga (2)

where h is the system angular momentum, ha is the N�1
matrix of the axial angular momenta of the rotors, g e is
the 3�1 matrix of external torques, ga is the N�1 matrix
of the internal axial torques applied by the platform to the
rotors, A is the 3�N matrix containing the axial vectors
of the N rotors, and J is an inertia-like matrix defined as

J � I�AIsAT (3)

Here I is the angular momentum of the system, including
the rotors, whereas Is � diagfIs1� � � � � IsNg is an N �N
matrix with the axial moments of inertia of the rotors
on the diagonal. The matrix J may be interpreted as the
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inertia matrix of an equivalent system where all the rotors
have zero axial moment of inertia.

The angular velocity of the body frame may be written
as

�� J�1�h�Aha� (4)

Observe that � may also be written as ∇H, where the
∇ is with respect to h, and H is a Hamiltonian function.
This formulation is especially useful for identifying rela-
tive equilibrium motions and for characterizing their sta-
bility.

The axial angular momenta of the rotors can be written
in terms of the body angular velocity, �, and the rotors’
axial angular velocities relative to the body,� s:

ha � IsAT
�� Is�s (5)

Note that �s is an N� 1 matrix, and that these relative
angular velocities are those that would be measured by
tachometers fixed to the platform.

The equations describing the kinematics of a reference
frame may be given in several different forms. Here we
choose to use the so-called “modified Rodrigues param-
eters,” which are defined in terms of the Euler principal
vector, e, and angle, Φ, by

�� e tan�Φ�4� (6)

The kinematic differential equations are

�̇� G���� (7)

where

G��� �
1
2

�
1������T �

1��T
�

2
1
�

(8)

Ignoring the external torques, ge, we consider the
problem of stabilizing the origin using only internal
torques. Note that using ga as the controls is different
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from applying equivalent external torques, since the in-
teraction of the rotors with the platform includes both ax-
ial and transverse (constraint) torques, and only the axial
torques are being controlled. It would also be interest-
ing to consider the effects of a constant, nonzero h a on
the applicability of previously developed external torque
control laws, or to consider a combination of internal and
external torques.

Following Tsiotras, we consider the candidate Lia-
punov function

V �
1
2
�h�Aha�

T K�h�Aha�� k ln
�
1��T

�

�
(9)

where K � KT � 0, and k � 0. Then

V̇ �
�
ḣ�Aḣa

�T K�h�Aha�� k
�

T G���

1��T
�

� (10)

Choosing K � J�1, and using Eqs. (1 and 4), one can
show that

V̇ �

�
�
�
Aḣa

�T
�

k
4
�

T
�
� (11)

where we have made use of the identity

�
T G�����

1��T
�

4
�

T
� (12)

Thus if we choose internal torques ga � ḣa so that

Aga � k1�� k2� (13)

then
V̇ ��k2ω2 (14)

Since �� 0 with � �� 0 would mean the control torques
would be nonzero, the fact that V̇ � 0 when�� 0 causes
no difficulty. The torque due to � �� 0 would change
ha, in turn channging h and �. Thus V is a Liapunov
function and the control stabilizes the origin.

One difficulty is that the controls are actually the inter-
nal torques ga, whereas Eq. (13 is a (possibly) non-square
linear system for ga. If N � 3, then the system is overde-
termined, and no solution may exist. If N � 3 and the
rotors are not coplanar (A is nonsingular), then a unique
solution exists. If N � 3 and the rotors are not coplanar
(A has rank 3), then an infinite number of solutions ex-
ist. One interesting possibility is to use the torques in the
nullspace of A for energy storage.

Results
In the two figures, we show the angular velocities and

modified Rodriguez parameters for an example maneu-
ver. It is evident that all six states are being driven to
zero.

System Model

In this section, we develop a combined control scheme
to track rigid spacecraft attitude motions using both
thrusters and momentum wheels. The thrusters may act
as the feedforward portion of the controller while the mo-
mentum wheels implement the feedback portion of the
controller. Alternatively, in case the thrusters can gen-
erate continuous control profiles, one may choose to im-
plement the feedforward plus the nonlinear feedback por-
tion of the control law through the thrusters. In this case,
the controller for the momentum wheels implements a
linear feedback control law in terms of the angular ve-
locity and attitude errors. Both of these implementation
schemes globally asymptotically stabilize the tracking
error.

We consider a rigid spacecraftP with N rigid and sym-
metric, balanced momentum wheelsW i� i� 1� � � � �N and
three thrusters mounted along the principal axes of the
body frame. (The wheel axes are allowed to have an arbi-
trary orientation with respect to the body.) Let N denote
the inertial frame, and B denote the body frame with the
origin at the center of mass of the system P � ∑i�N

i�1 Wi.
The desired trajectory to be tracked is one generated by
a “virtual” spacecraft with the same inertia properties or
total angular momentum as the rigid spacecraft. Let R
denote the reference frame which is fixed at the center of
mass of this virtual spacecraft.

The purpose of the controller is to make the body
frame B asymptotically track the reference frame R. In
addition, in the absence of any disturbances and for the
same initial conditions, the tracking controller should
keep B and R aligned at all times.

Dynamics

Let I be the moment of inertia of the system, including
the wheels and thrusters, and let Isi� i � 1�2� � � � �N denote
the axial moments of inertia of each momentum wheel.
Defining the matrix Is � diagfIs1� � � � � IsNg, we have the
dynamics of the system described by the following equa-
tions1

ḣB � h�B J�1�hB�Aha��ge (15a)

ḣa � ga (15b)

where hB is the system angular momentum vector in B
frame given by

hB � I�B �AIs�s (16)

ha is the N�1 matrix of the axial angular momenta of the
wheels, ge is the 3�1 matrix of external torques applied
by the thrusters, ga is the N � 1 matrix of the internal
axial torques applied by the platform to the momentum
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wheels, A is the 3�N matrix containing the axial unit
vectors of the N momentum wheels, and J is an inertia-
like matrix defined as

J � I�AIsAT (17)

From Eqs. (16) and (17) the angular velocity of the body
frame can be written as

�B � J�1�hB�Aha� (18)

and the axial angular momenta of the momentum wheels
can be written as

ha � IsAT
�B � Is�s (19)

where �s � �ωs1�ωs2� � � � �ωsN�
T is an N � 1 vector de-

noting the axial angular velocities of the momentum
wheels with respect to the body.

Kinematics

Here we choose the “Modified Rodrigues Parameters”
(MRP’s) to describe the kinematics of the attitude motion
which are defined as

�� ê tan�Φ�4� (20)

where ê is the unit vector along the Euler principal axis,
and Φ is the Euler principal rotation angle.2 The differ-
ential equations of the kinematics in terms of the MRP’s
are

�̇� G���� (21)

where

G��� �
1
2

�
1������T �

1��T
�

2
1
�

(22)

and 1 is the 3� 3 identity matrix. Therefore, the kine-
matics of the body frame can then be written as

�̇B � G��B��B (23)

Suppose a reference motion is designed and, at the
design stage, only the thrusters provide control torques,
while the momentum wheels are non-rotating (i.e., ω si �
0� i � 1�2� � � � �N). In this case, from Eq. (16) hB � I�B.
With the reference frame denoted by R, the reference dy-
namics is assumed to be

ḣR � h�R I�1hR �gR (24)

where hR � I�R and �R is the angular velocity of the
virtual body in the R frame. Note that if the wheels
are non-rotating and ge � gR then Eqs. (15) and (24) are
identical. Thus, Eq. (24) describes the dynamics of the

attitude motion of a “virtual” spacecraft with the same in-
ertia properties as the real spacecraft. This virtual space-
craft will be used to generate the desired (nominal or op-
timal) trajectory to be tracked. Hence, gR in Eq. (24) is
the desired nominal control torque which, if acted upon
the real spacecraft (assuming stationary wheels), would
generate the desired trajectory.

The kinematics of the R frame is given by

�̇R � G��R��R (25)

where �R denote the MRP’s of the R frame with respect
to the inertial frame N.

Let us now define the tracking error of the angular ve-
locity expressed in B frame as

δ���B�CB
R �δ���R (26)

with CB
R�δ�� the rotation matrix from the reference

frame R to the body frame B, and δ� the kinematics er-
ror between the frames B and R defined by

CB
R�δ�� � CB

N��B��CR
N��R��

T (27)

From Eqs. (21) and (26), the differential equation for the
error kinematics takes the form

δ�̇� G�δ��δ� (28)

From Eq. (24), we have

�̇R � I�1h�R I�1hR � I�1gR (29)

thus

JCB
R�δ���̇R � JCB

R�δ��I
�1h�R I�1hR �JCB

R�δ��I
�1gR

(30)
According to the definition of the tracking error of the an-
gular velocity in Eq. (26), we define the following track-
ing error of the angular momentum expressed in B frame

δh � hB�JCB
R�δ���R

� I�B �AIs�s�JCB
R�δ���R

� J��B�CB
R�δ���R��A�Is�s � IsA

T
�B�(31)

and using Eq. (19) we have finally that

δh � Jδ��Aha (32)

From Eq. (32) we have the error dynamics as

δḣ � ḣB�J
dCB

R�δ��
dt

�R�JCB
R�δ���̇R

� ḣB�J��B δ��JCB
R�δ���̇R

� h�B J�1�hB�Aha��ge�J��B δ��JCB
R�δ���̇R(33)
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where JCB
R�δ���̇R is given in Eq. (30). Here we have

used the fact that

dCB
R�δ��
dt

�R ���B δ� (34)

We give a brief proof of this fact in the Appendix.

Tracking Controllers

Consider the following Lyapunov function candidate

V �
1
2
δ�T Kδ��2k2 ln�1�δ�Tδ��

�
1
2
�δh�Aha�

T K�δh�Aha��2k2 ln�1�δ�Tδ��(35)

where K � KT � 0, and k2 � 0. This function is positive
definite and radially unbounded3 in terms of the tracking
errors δ� and δ�. Calculation of the derivative of V
along the error dynamics and kinematics, Eqs. (33) and
(28), yields

V̇ � �δ̇h�Aḣa�
T K�δh�Aha��4k2

δ�T G�δ��
1�δ�Tδ�

δ�

� �δ̇h�Aḣa�
T K�hB�Aha�JCB

R�δ���R�� k2δ�T δ�
� �δ̇h�Aḣa�

T K�J�B�JCB
R�δ���R�� k2δ�T δ�

� �δ̇h�Aḣa�
T KJδ�� k2δ�Tδ� (36)

By choosing K � J�1, we get

V̇ � δ�T �δ̇h�Aḣa � k2δ��
� δ�T �h�B J�1�hB�Aha��ge�J��B δ�

�JCB
R�δ��I

�1h�R I�1hR�JCB
R�δ��I

�1gR�Aga� k2δ�
�

(37)

Controller I

In case the thrusters are of the on-off type they may
not be able to implement a continuously varying control
profile (unless a PWPM scheme is used) and thus, it will
be assumed that gR is a bang-bang command. In this case
we choose the thrusters to perform the designed nominal
control gR, i.e.,

ge � gR (38)

and the momentum wheels are used to correct for the
tracking errors. From Eq. (37), letting the feedback con-
trol law for the momentum wheels satisfy

Aga � h�B J�1�hB�Aha��gR�J��B δ�
�JCB

R�δ��I
�1h�R I�1hR�JCB

R�δ��I
�1gR � k1δ�� k2δ�(39)

yields

V̇ ��k1δ�Tδ�� 0 (40)

where k1 � 0. This implies that the tracking trajectories
are bounded and furthermore,

lim
t�∞

δ��t� � 0 (41)

From Eqs. (32) and (33), we have that

Jδ�̇ � δḣ�Aḣa

� �k1δ�� k2δ� (42)

Thus, and because of Eq. (41), we have

lim
t�∞

δ��t� � 0 (43)

From LaSalle’s Theorem,3 the tracking error dynamics
and kinematics with the feedback control law (39) are
globally asymptotically stable.

In the absence of any initial condition errors, i.e.,
δ��0� � δ��0� � 0 it is easy to show that the control
law in Eqs. (38) and (39) ensures perfect tracking, i.e.,
�B�t� ��R�t� and �B�t� ��R�t� for all t � 0.

Controller II

Equations (38) and (39) show that Controller I is such
that if initially �B�0� ��R�0� and �B�0� � �R�0� and,
in addition, �s�0� � 0, then hB�t� � hR�t� for all t � 0.
In particular, the last equality implies that �s�t� � 0 for
all t � 0 and the momentum wheels remain stationary
with respect to the platform.

An alternative control implementation is to choose the
control law so that, in the absence of initial condition er-
rors, and if the total axial momentum is initially zero,
ha�0� � 0, it remains zero during the maneuver, i.e.,
ha�t� � 0 for all t � 0. In this case, hB � J�B and we can
therefore assume that the reference dynamics is given by

ḣR � h�R J�1hR �gR (44)

where hR � J�R. Choosing the same Lyapunov function
as before and the thruster control law as

ge � JCB
R�δ��J�1gR (45)

and the momentum wheel control law

Aga � h�B J�1�hB�Aha��J��B δ�
�JCB

R�δ��J
�1h�R J�1hR � k1δ�� k2δ�(46)

one obtains again that

V̇ ��k1δ�Tδ�� 0 (47)

where k1 � 0. Using similar arguments as before, one
can show that this control law achieves global asymptotic
stability for the tracking error dynamics.
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Note that in the absence of any initial condition errors,
δ��0� � δ��0� � 0, and if ha�0� � 0, the control law in
Eqs. (45) and (46) guarantees that δ��t� � δ��t� � 0 for
all t � 0 and the control law becomes

ge � gR (48)

and

Aga � h�B J�1hB�h�R J�1hR � �Aha�
�
�R (49)

The last equation, along with Eq. (15b) implies that if
ha�0� � 0, then ga � 0 and hence, ha�t� � 0, for all t � 0.

Controller III

Another alternative way to implement the control law
is to enforce a linear feedback control law for the wheels,

Aga � k1δ�� k2δ� (50)

Then one needs to choose the thruster control law as

ge ��h�B J�1�hB�Aha��J��B δ��JCB
R�δ���̇R

(51)
where �̇R is given either from Eq. (24) or from Eq. (44).
In the first case, we have that hR � I�R whereas in the
second case we have that hR � J�R.

The Lyapunov function in Eq. (35) can be used to
show that this control law renders the error system
�δ��δ�� globally asymptotically stable.

Numerical Example

To show the effectiveness of the previous control laws,
we apply them to track a trajectory of a minimum-time
rest-to-rest maneuver. Three momentum wheels are used
to provide the feedback control. They are aligned with
the principal axes and their axial moments of inertia are
given by Is � diagf0�01�0�01�0�01gkgm2. The space-
craft moment of inertia matrix is

J �

�
	200 0 0

0 150 0
0 0 175



�kgm2

The nominal control gR, which is known to be bang-
bang, is designed to drive the spacecraft from an initial
attitude�R�0� � �0�1�0�2�0�3�which can be represented
in 3-2-1 Euler angles as �42�5��20�2��77�7��, to a posi-
tion aligned with the inertial frame, i.e.,��t f � � �0�0�0�.
It is assumed that the actual initial attitude of the body
frame is �B�0� � �0�11�0�15�0�28�, which can be ex-
pressed in 3-2-1 Euler angles as �37��13�3��69��.

For the sake of brevity we present the results only
for the Controllers I and III. The results are shown in
Figs. (1)-(6). In both cases, the gains were chosen as
k1 � 54 and k2 � 47.

Figure 1 shows the time history of δ�, and Fig. 2
shows the time history of δ�. Note that the time his-
tories of the tracking error are the same for both con-
trollers. Figures 3 and 4 show the time history of the
controls when the thrusters perform the nominal control
gR and the control law for the momentum wheels is given
by Eq. (39). Figures 5 and 6 show the time history of the
control inputs when the thrusters perform the control law
in Eq. (51) and the momentum wheels perform the linear
feedback control law in Eq. (50), with reference input
generated by Eq. (24).

Appendix

We now give a brief proof of the fact that

dCB
R

dt
�R ���B δ�

It is well known in the analytical dynamics4 that

ĊB
N ����B CB

N � and ĊR
N ����R CR

N

so

dCB
R

dt
�

d�CB
NCN

R �

dt
� ĊB

NCN
R �CB

NĊN
R

� ���B CB
NCN

R �CB
N ���

�

R CR
N �

T

� ���B CB
NCN

R �CB
N ���

�

R CR
BCB

N �
T

� ���B CB
NCN

R �CB
N �C

B
N �

T CB
R�

�

R

� ���B CB
R �CB

R�
�

R

Thus

dCB
R

dt
�R � ���B CB

R�R

� ���B ��B�δ��
� �

�

B δ�
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