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The success of SLAM-based algorithms developed in the ground robotics community
motivates their study and application in the domain of autonomous space robotics, es-
pecially for relative navigation problems with respect to a non-cooperative space object.
In this paper, the application of ORB-SLAM to the non-cooperative rendezvous problem
is studied, by establishing the essential definitions, by detailing the algorithm’s operation
and by identifying the required modifications to reliably implement SLAM solutions to
space applications. The traditional ORB-SLAM algorithm demonstrates high robustness
and low computation time, by exploiting relatively inexpensive ORB features in a slid-
ing window approach. The algorithm is tested on a sequence of images taken during the
rendezvous phase of the Hubble Space Telescope Servicing Mission, as well as using realis-
tic experimental data produced in the ASTROS laboratory environment at Georgia Tech.
The results establish the need for further development and specialization, but also showing
great potential for use in future space robotics applications.

I. Introduction and Related Work

We consider the problem of relative navigation between two satellites in different orbits around a central
celestial body, such as the Earth. Let the first of these satellites be called the chaser, capable of maneuvering
about the second satellite, called the target. In the non-cooperative rendezvous scenario, it is assumed that
no prior information about the states of the target nor of the relative states is known, and that there is a total
lack of direct exchange of information between the target and the chaser satellites during the rendezvous, be
it regarding the absolute states of the target, the absolute states of the chaser or the relative states between
the two. Furthermore, we make no assumption regarding the motion of the target. In particular, the target
satellite may not be passive, but its rotational motion can be actively controlled.

As it circumnavigates the target, the chaser satellite gathers measurements using on-board sensors and grad-
ually builds an estimate of the target’s states, provided the latter are observable. Typical means of relative
pose measurements include laser, flash LIDAR or radar range-finders and cameras in various wavelength
bands, appropriate for proximity operations. Similarly, global information may be provided (when available)
by global positioning systems, star trackers and inertial measurement units.

In the context of spacecraft proximity operations in past and current space missions, the severe lack of
computational resources has led some authors1 to consider filtering as the only adapted space-bound nav-
igation solution, generally exploiting range-based measurements2 producing a point cloud. However, given
the ever growing on-board computer resources available in space-bound missions and the possible emergence
of space-grade GPU’s, the vision-based bundle-adjustment approach can soon enough be implemented as
a viable solution for autonomous relative navigation in unmanned space missions, such as in-orbit satellite
servicing or in-orbit large structure assembly. Eventually, such a system would enable closed-loop control of
the chaser’s motion around the target, intended for specific maneuvers, such as grappling and docking.

Augenstein3 proposed the use of monocular SLAM for the purpose of estimating the target pose by exploiting
a Gaussian driven process to model rotation estimation within a Rao-Blackwellized particle filter. Later on,
Tweddle4 established that Simultaneous Localization and Mapping (SLAM) can be used to estimate the
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linear and angular velocities, as well as the position of the center of mass and the diagonal inertia matrix
(up to a scale) of a non-cooperative spinning target satellite using stereoscopy, under a torque-free motion
assumption. In Tweddle’s solution, an approach employing smoothing (also known as bundle adjustment5) is
favored over one that uses filtering. Tweddle argues that a filtering scheme can converge to a local minimum.
In contrast, in a smoothing scheme, initially estimating and converging to the positions, orientations and
velocities (linear and angular) of the target will allow for a subsequent estimation of dynamical properties
which is richer in structure and information, thus avoiding convergence to local minima. The added certainty
regarding convergence comes at an additional computational cost, since the smoothing problem is much larger
in scale. Tweddle employs iSAM,6 which is based on fast incremental factorizations of the naturally sparse
smoothing problem information matrix.

Multiple open-source SLAM algorithms are now readily available in the community, as demonstrated by
the OpenSLAM online compendium.7 As a recent, efficient and robust open-source rendition of a bundle
adjustment-based localization and mapping algorithm, ORB-SLAM8 is promising in its applicability to the
vision-based rendezvous problem. The algorithm exploits ORB features,9 which are rotation-invariant image
features based on BRIEF binary descriptors. Indeed, ORB features can be rapidly extracted, beating the
calculation time of other popular image features, such as SIFT, by several orders of magnitude. This allows
for a large number of features to be extracted. By implementing a generous initialization of image keypoints,
paired with a harsh culling policy of weaker image keypoints, ORB-SLAM demonstrates higher robustness.
In addition, ORB-SLAM implements a bag-of-words method for place recognition, which automates the
loop-closure step. Indeed, when a recognizable scene is viewed for a second time after many image frames
have passed, the algorithm carries-out a full bundle adjustment. This process greatly reduces the error
in the estimation by eliminating, through inference, drifts that may have accumulated between successive
keyframes.

In this paper, the applicability of ORB-SLAM to the problem of non-cooperative rendezvous is further
explored and tested on the relative pose estimation problem of the Hubble Space Telescope (HST) during
a close-up maneuver, as well as on experimental data produced at the 5-DOF experimental platform for
Autonomous Spacecraft Testing for Robotics Operations in Space (ASTROS) of the Dyanmics and Control
Systems Laboratory (DCSL) at the School of Aerospace Engineering of the Georgia Institute of Technology.

II. Non-Cooperative Rendezvous Pose Estimation

A. Relative Navigation in Orbit

For notation purposes, let (RB/A, t
B
B/A) ∈ SE(3) be the rotation matrix and translation vector pair trans-

forming a homogeneous vector xA ∈ P3 (here Pn = R 6=0 × Rn is the (n + 1) dimensional projective space
corresponding to the n-dimensional space Rn) whose coordinates are expressed in the A frame to a homo-
geneous vector xB ∈ P3 whose coordinates are expressed in the B frame, such that

xB =

[
RA/B tBA/B

0 1

]
xA. (1)

Equivalently, we denote TBA/B ∈ SE(3) to be the pose of frame A with regards to frame B, as expressed in
frame B coordinates, given by

TBA/B ,

[
RA/B tBA/B

0 1

]
. (2)

Let E = {E; ê1, ê2, ê3} be an Earth Centered Inertial (ECI) frame, where ê1, ê2, ê3 ∈ S2 are three mutually
orthogonal unit vectors defining the space R3. Next, let S,T be the centers of mass of the chaser and of
the target satellites, respectively, and let rES , r

E
T ∈ R3 be the position vectors of S and T expressed in E

frame coordinates, respectively. The relative vector rE between points S and T as expressed in the E frame
coordinates is then given by rE = rET − rES .

We define the non-inertial local vertical local horizontal (LVLH) reference frame10,11 L = {S; ˆ̀
1, ˆ̀

2, ˆ̀
3} as
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follows. Let the origin at S, having the three unit vectors ˆ̀
1, ˆ̀

2, ˆ̀
3 ∈ S2 oriented such that

ˆ̀
1 =

~rS

‖~rS‖
, ˆ̀

3 =
~hS

‖~hS‖
, ˆ̀

2 = ˆ̀
3 × ˆ̀

1, (3)

where ~vS is the orbital velocity vector of the chaser and ~hS = ~rS×~vS is the angular momentum vector of the
chaser.

Let S = {S; ŝ1, ŝ2, ŝ3} be the chaser satellite fixed-body frame with origin at S and arbitrary body-fixed
orientation determined by the mutually orthogonal unit vectors ŝ1, ŝ2, ŝ3 ∈ S2. It follows that a rigid-body
transformation TLS/L ∈ SE(3), which is dependent on the dynamics of the chaser (and thus evolves with

time), encodes the pose of frame S with regards to frame L expressed in frame L coordinates.

It is usual4 to consider a frame T =
{

T; t̂1, t̂2, t̂3
}

such that the unit vectors t̂1, t̂2, t̂3 ∈ S2 are aligned with the
principal axes of inertia of the target. In the non-cooperative estimation problem, T ET /E ∈ SE(3) is unknown,
and can be recovered by feeding measurements of pose to an estimation procedure which is programmed
with the dynamical model of the target.2 Since the issue of the relative dynamics between the two satellites
is not treated in this paper, the frame T is not the subject of any study herein. Nevertheless, it is crucial
to distinguish this frame from the various geometric frames relevant to the vision-based relative navigation
problem. Let C = {C; ĉ1, ĉ2, ĉ3}, with ĉ1, ĉ2, ĉ3 ∈ S2, be the sensing camera body-fixed frame centered at

ê1

ê2

ê3

E

~rS

~r T
ˆ̀
1

ˆ̀
3

ˆ̀
2

~r

S

T

Figure 1. The Orbital Relative Navigation Problem Frame Definitions

point C, the optical center of the sensing camera, and oriented such that ĉ3 is aligned with the camera’s
viewing direction, ĉ2 points in the “downwards” direction in the image, and ĉ1 = ĉ2 × ĉ3. The pose TSC/S of
the sensing camera with respect to the chaser fixed-body frame S, as expressed in the S frame coordinates
is assumed to be known. If the camera is installed on gimbals, then appropriate encoder information will
provide this pose; otherwise, this transformation is constant.

In target pose estimation, the frame of interest G = {G; ĝ1, ĝ2, ĝ3} has its origin at some arbitrarily chosen
point G, and is oriented by the unit vectors ĝ1, ĝ2, ĝ3 ∈ S2,4 and constitutes a geometric reference and
coordinate system for expressing the position vectors of the components of the target satellite. Point G’s
location is known by the designers of the target satellite.

The ORB-SLAM algorithm will generate a map of points, whose position vectors are expressed in an arbi-
trarily chosen reference frame, that we shall call the geometric feature frame N = {N, n̂1, n̂2, n̂3} coordinates,
with n̂1, n̂2, n̂3 ∈ S2. Point N is chosen at the origin of the map, determined during automatic initialization
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phase of the algorithm (see Appendix A). At initialization, it is assumed that frame N coincides exactly
with the corresponding frame C.

The goal of a vision-based relative navigation algorithm is then to estimate the rigid-body transformation
TSG/S between the target-fixed geometric frame G and the chaser-fixed geometric frame S, as expressed in S
frame coordinates.

It is important to realize that ORB-SLAM in monocular mode produces only a scale ambiguous version of
the transformation TNC/N . Indeed, let C′ be the point representing the camera in the ORB-SLAM algorithm

framework and construct frame C′ = {C′; ĉ1, ĉ2, ĉ3}, centered at this point, with ĉ1, ĉ2, ĉ3 as previously
defined. Then, tC

′

N/C′ is the scale ambiguous position vector of the frame N with regards to the camera frame

C′ as expressed in frame C′ coordinates, as estimated by the algorithm. Assume now that RN/C = RN/C′

and let the unknown scale λ ∈ R>0 be such that tCN/C = λtC
′

N/C′ . Then, it follows that

T CN/C =

[
RN/C′ λtC

′

N/C′

0 1

]
. (4)

To obtain our desired transformation, we assume that all of the points in the reconstructed map are part of
the target body (in other words that they are fixed with regards to the target geometric frame G). It follows
that the pose of frame G with regards to frame N is encoded in an unknown, though constant, rigid-body
transformation TNG/N . By cascading transformations, it follows that

TSG/S = TSC/ST
C
N/CT

N
G/N . (5)

In our approach, an estimate of T C
′

N/C′ , denoted T̃ C
′

N/C′ , is directly obtained from ORB-SLAM. If the in-

formation about the geometric model of the target satellite is available, we use the Coherent Point Drift12

algorithm to obtain an estimate of scale λ and of the transformation TNG/N , by comparing the point cloud of
the reconstructed map to that of the target satellite 3D model.

B. ORB-SLAM Local Bundle Adjustment and Automatic Map Initialization

It is typical to consider SLAM as a likelihood maximization problem (see Appendix A) where the unknown
model parameters are the camera frame poses and the reconstructed map point coordinates, the measurement
vectors are the image coordinates of feature points detected in each image frame and the measurement
function is a composition of a rigid-body frame transformation of map points followed by their projection
into the camera image plane. It is known that the problem reduces to a least-squares minimization problem,
under an assumption of jointly Gaussian distribution of the likelihood.

For initialization of the map, two-view geometry13 is exploited to triangulate a set of points and to calculate
a relative pose between the two camera frames in which the map points are detected.8 The algorithm
successively chooses video frames until it can successfully initialize the map. Once achieved, the first frame
N = {N; n̂1, n̂2, n̂3} then becomes the global reference frame and the coordinate system for the remainder
of the SLAM process. The second frame C = {C; ĉ1, ĉ2, ĉ3} corresponds to the pose of the camera for the
subsequent video frames.

One of two models is used to evaluate the two-view geometry. The first one assumes that the scene is planar
and the second one assumes that the scene is non-planar.8 Since neither of these models can be preferred for
a-priori initialization, a competition based on a fitness score is carried-out between the two possible models,
to avoid a corrupted initial map.

III. Experimental Results

In this section, details and results pertaining to the validation of the proposed pose estimation approach
are laid out. Firstly, the method was tested using a monocular video footage captured during proximity
operations of the NASA STS-125 Servicing Mission 4 (SM4) to the Hubble Space Telescope (HST)14 in May
2009. Secondly, to further validate the applicability of the proposed approach for non-cooperative navigation,
several realistic tests were performed using the ASTROS platform and qualitative comparisons were made.
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A. Hubble Space Telescope Servicing Mission Sequence

The Relative Navigation Sensor (RNS) was used in an on-orbit demonstration, storing imagery from the
RNS cameras during the Rendezvous Proximity Operations and Docking (RPOD) phases of the mission.

In the footage, a relative maneuver of −90◦ motion about the HST +V2 axis can be seen, with the +V3
axis pointing away from the camera. The on-board algorithm GNFIR,14 which minimizes the least square
errors between detected edges and a stick model of HST, which contains arbitrarily chosen edges of the
3D HST model, confirms that the relative range varies from 97 m to 45 m during the 20 minutes and 27
seconds14 of tracking, with a peak pose quality of 99.2%. Hence, true scale relative pose can be recovered
with prior information about the geometry of the target. Initially, in our approach, to test a completely
non-cooperative navigation in the current study, no model was used.

The sequence of 4,187 RGB images of the sequence, each of size 1, 000× 1, 000 pixels, were fed to the ORB-
SLAM algorithm, which successfully produced a map of points pertaining to the surface of HST, a set of
keyframes K that form the graph of the bundle adjustment optimization problem and, for each video frame
i = 1, . . . , 4187, a scale ambiguous transformation (or relative pose) estimate of the geometric feature frame
N with respect to the camera frame C′ expressed in frame C′ coordinates, herein designated as

T̃ C
′

N/C′ = (R̃N/C′ , t̃
C′
N/C′) ∈ SE(3) (6)

The harsh lighting conditions experienced in the visible spectrum in space can be challenging for a success-
ful detection phase of a visual feature based method like ORB-SLAM. However, camera gain control and
appropriate pre-processing operations, akin to contrast-limited adaptive histogram equalization (CLAHE),
can mitigate these effects, as shown in Figure 2. The intrinsic camera parameters that were used for this

Frame 3150 CLAHE−−−−−→

Frame 3650 CLAHE−−−−−→

Figure 2. Mitigation of Harsh Lighting Conditions Through CLAHE

experiment are given in Table 1.

In the first phase of the algorithm, a map initialization is attempted. In this step, as illustrated in Fig. 3,
detected features are tracked over several frames until sufficient parallax is achieved, so as to establish a valid
guess of the transformation between the latest frame and the anchor frame. Noticeably, this step is difficult
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Table 1. RNS1 Camera Parameters

Parameter Value

Detector array size 1000× 1000

Pixel size (µm) 6.7

Focal length (mm) 35

Focal length (pixels) 5, 223.5

f -stop 2.8

Optical center pixel (500, 500)

Figure 3. Initialization step of ORB-SLAM on HST sequence.

to accomplish given the narrow field of view of the RNS camera and the long distance to the target. Since
the translation of the camera frame induces a parallax in the image plane, for the initialization to succeed,
sufficient parallax needs to be achieved. However, given the long distance between the RNS camera and
HST, a large translation13 between frames is thus required for a successful initialization of the map and of
the initial camera transformation TNC/N . Furthermore, in some initialization trials, cases where a corrupted
map was initialized due to a two-fold ambiguity were observed. This is symptomatic of the long distance to
the target, meaning that the resulting view geometry is closer to orthographic projection than to perspective
projection. In such cases a set of points that respected the view geometry of both frames, but violated the
3D shape of HST, where inserted in the map, leading to false estimation of relative pose subsequently. To
resolve this issue, appropriate values of the parameters of ORB-SLAM were chosen. Also note that pure
rotation scenarios, where there is no relative translation between the chaser and the target are not conducive
to initialization success.

In a second step, as the camera travels around HST, the algorithm accumulates map points by triangulating
detected ORB features over multiple views using the local bundle adjustment scheme. This process is
illustrated in Fig. 4. The output results of the algorithm are illustrated in Figs. 5 and 7. It is observed that,
in general, the SLAM keyframes and the trajectories get closer to each other at the end of the trajectory
path. The camera trajectory is the sequential stacking of the result of a motion-only bundle adjustment,
which is evaluated at each new image frame. However, due to the constant correction of keyframes in the
bundle adjustment thread, which are kept in memory during all the estimation process, a deviation between
the past keyframe positions and the trajectory may occur. Note that in a post processing step, evaluation of
the unknown scale s is carried-out, by comparing the reconstructed map to a known model of HST. For this
purpose, Gaussian mixture models of both point clouds are produced and then compared, via a coherent
point drift point set registration.12
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Figure 4. Tracking and Mapping Step of ORB-SLAM on HST sequence.

Since no ground truth data from the considered RNS flight sequence is available, the absolute accuracy of the
estimation process could not be evaluated. Instead, the resulting poses were scaled and compared in position
and orientation with those resulting from the GNFIR algorithm, originally used in the HST servicing Mission
4, see Figures 5 and 6.
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Figure 5. Resulting Pose Estimates and Reconstructed Map

In addition, using a high fidelity 3D model of HST and the estimated scale as mentioned above, the pixel
error between the edge map of the camera image and the edge map of the zBuffer of a simulated render,
using OpenGL, was calculated. The edge pixels were matched together using an Iterative Closest Point
(ICP) algorithm. Errors greater than 5 pixels were rejected, while keeping more than half of the initial edge
pixel population. This is due to variability of the edge detection method used (thresholding on a Laplacian
of Gaussian). The remaining pixel errors were accumulated, and the normalized root mean square error
(NRMSE) metric measuring the normalized average distance between the reprojection of the 3D model
using the estimated poses and the detected image was calculated (see Fig. 8). One standard deviation of the
distribution of the detected image edge pixels was used as normalization factor, thus mimicking the apparent
size of the satellite in the image.
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Figure 6. Comparison in Scaled Position and Orientation between GNFIR and ORB-SLAM

B. ASTROS Experimental Facility

The ASTROS platform supports experiments in the area of vision-based autonomous rendezvous and docking,
specifically directed towards on-orbit servicing of spacecraft. The system consists of a raised hemi-spherical
air bearing which provides 2 DOF of motion, as well as three other linear air bearings situated at the base
of the structure, which in turn floats on a near-perfectly flat epoxy floor, providing a further 2 DOF in
translation motion and 1 DOF in rotation. The platform is fitted with 4 Variable Speed Control Moment
Gyros (VSCMG’s) as well as 12 high-pressure thrusters, allowing for numerous experimental scenarios to
be tested with a high level of realism. Possessing a real-time SpeedGoat15 computer on the platform allows
for demonstration of on-board capabilities. The system capabilities include the ability to run sophisticated
planning and control algorithms, exploiting the actuators, and sampling sensors at high frequencies, in order
to execute maneuvers within the testing arena. Additionally, a dedicated NVidia Jetson TX1 Module permits
highly parallelizable vision-based and deep learning algorithms to be run simultaneously, with reasonably
low power consumption. Furthermore, ASTROS has a suite of sensors including a rate gyrometer, an Inertial
Measurement Unit (IMU), magnetometer and Sun sensor. Finally, the platform is fitted with a monocular
PointGrey Flea3 camera, which has been put to use in this experiment to produce video footage, with various
array sizes.

Table 2. PointGrey FL3-U3-20E4C Camera Parameters

Parameter Value

Detector array size 600× 800

Pixel size (µm) 4.5

Focal length (mm) 8

Focal length (pixels) 1,777

f -stop 3.2

Optical center pixel (385,296)

The ASTROS facility is also fitted with eight VICON interior global positioning cameras, producing reliable
ground truth position and orientation measurements for comparison purposes. Appropriate lighting and
dark environment surroundings allow for realistic footages to be shot during tests, see Figure 9. The harsh
contrasts inherent to imaging highly reflective surfaces against a dark background can be reliably reproduced
in the ASTROS facility, as shown in Figure 10.
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In this experiment, the floating platform was manually moved around the ASTROS arena, while keeping the
camera generally pointed at a dummy 1U CubeSat, which hangs from the ceiling in the center of the arena,
having some freedom of motion itself. Several sequences of images were captured using the on-board camera.
The ORB-SLAM algorithm was then run with these footages, and the resulting pose data was compared
to those output from the VICON system. To mitigate the fact that no appropriate comparison data was
available for the validation of the results using the HST sequence, VICON output data was captured so as to
track the ground truth position of the ASTROS floating platform for comparison purposes. For each video
frame i = 1 . . . Nframes of the camera footage, proper timestamping and communication delay compensation
were exploited so to associate a valid data point from the VICON system.

To this end, assume that the VICON system global reference frame is frame E . In practice, tracking the
platform amounts to tracking the S frame at each video frame i over the duration of the test, encoded in
transformation T E,iS/E . Furthermore, the target dummy satellite is also tracked, associated with the T frame,

whose pose is encoded in the transformation T E,iT /E . An ideal navigation algorithm should directly estimate

the pose of the T frame with respect to the S frame. Yet, as explained in Subsection A of Section II, ORB-
SLAM only outputs a scale ambiguous transformation TNC′/N . However, we know that at the initialization
frame iinit of the algorithm, frame N coincidences with frame C, and thus we can assume that

TN ,iinit
T /N = T C,iinitT /C . (7)

In turn, we know that

T C,iinit

T /C = T T ,iinit
E/T T E,iinitC/E =

[
T E,iinitT /E

]−1

T E,iinitS/E TSC/S . (8)
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Figure 9. The ASTROS 5-DOF Floating Platform and Arena

Figure 10. Examples of Realistic Imagery of a Target Cubesat in ASTROS Experimental Facility

It is crucial to note that frames N and C are guaranteed to coincide only at the initialization time, since the
target is free to translate and rotate. This means that target body-fixed frames N and T may be moving
with regards to the E frame during the test. By the rigid body assumption, it follows that

T T ,i
N/T = T T ,iinit

N/T , for all i ≥ iinit. (9)

Finally, we obtain the resulting λ-scaled ORB-SLAM estimated camera pose with regards to frame E at the
i-th video frame, given by

T̃ E,iC/E = T E,iT /ET
T ,iinit

N/T TN ,i
C/N = T E,iT /E

[
TN ,iinit
T /N

]−1
[
Ri
N/C′ λtC

′,i
N/C′

0 1

]−1

. (10)

We then compare the latter transformation to that which is informed by the VICON system, namely

T E,iC/E = T E,iS/ET
S
C/S . (11)

Qualitative results are shown in Figures 12, 14 and 16, which correspond to three test cases executed in the
ASTROS facility. As can be seen in these figures, the target satellite shape is approximately captured by the
obtained map point cloud. Furthermore, comparison to the ground truth shows good accuracy, up to the
predetermined scaling value, as illustrated in Figures 13, 15, 17. It is however noticeable that ORB-SLAM
seems to be producing output pose information for only some portions of the its track in the arena, as the
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platform circumnavigates the target. It is observable, in the three test cases, that the successful segments of
tracking are always on the same side. In fact, by looking at the relative orientation quaternion qT /C in Figure
11, we can see that over three revolutions around the target, the segments for which tracking is conserved
are centered around a specific reoccurring orientation. Considering the way that the ORB-SLAM algorithm
implements tracking, a set of features stored in previously seen keyframes are used for matching, using its
Bag of Words (DBoW) method.8
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Figure 11. Orientations with Successful Tracking

The loss of tracking can be explained by the fact that since the target is a convex prism, at some orientations,
visibility of almost half of the tracked features lying on the same plane (i.e. one of the sides of the CubeSat)
is lost at the same time. Even though ORB-SLAM constantly initializes new features and map points, this
does not compensate for the gross loss of features. Noticeably, however, the length of the tracked segment
seems to grow at each successive revolution, which is the result of the growing log of keyframes that are
stored for place recognition.

Indeed, further study has to be dedicated to the specialization of the ORB-SLAM algorithm so to improve
the performance of tracking, since the our scenario involving the tracking of features on a convex object
departs from the typical ground robotics scenario, where features are tracked on surfaces that usually form
a concave object as viewed from the camera, such as the inner walls of a room about which a quadrocoptor
maneuvers. It is important to note that even in the classical application, a harsh maneuver causing a loss
of visibility of a majority of tracked features between two successive frames will cause the algorithm to lose
tracking. Hence, keeping a good portion of tracked features of the previous camera frame is crucial to ensure
conservation of tracking. The loss of tracking over a revolution means that the loop-closure capabilities of
ORB-SLAM can not be properly tested.

IV. Conclusion

SLAM is usually implemented in a static scene on-board environment-aware robots. By tracking landmark
points in this environment and by exploiting odometry measurements, the robot gradually builds a true-
scale estimate of its own position within the scene, and also builds a map of the scene at the same time. In
contrast, in a spacecraft navigation scenario, little to no dynamics-based measurements, such as accelerations,
are available if no maneuvers are executed, yet the spacecraft has relative motion. Moreover, in the relative
navigation scheme, very little maneuvering is required to maintain the relative dynamics between the chaser
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Figure 12. Test 1 Resulting Pose Estimates and Reconstructed Map

and the target. Hence, a robust vision-based algorithm like ORB-SLAM, which autonomously provides
relative pose (up to a scale) between the chaser and the target by simply exploiting camera images is a
well-adapted part of the navigation solution intended for non-cooperative rendezvous. ORB-SLAM does
so without requiring any prior information on the target or any ego-motion information. In this paper,
the application of the ORB-SLAM algorithm to real data from experiments demonstrated that the SLAM
algorithm, in its bundle adjustment variety, is well adapted for a long sequence of input images. It has to
be noted that the HST sequence used in this study did not allow for testing the loop-closure capability of
the ORB-SLAM algorithm. Furthermore, in the ASTROS experiment test cases, loop-closure could not be
achieved repeatedly, even while a real-world rendezvous scenario was simulated, during which the chaser and
target complete several revolutions around each other. ORB-SLAM has demonstrated in ground robotics
literature that it can eliminate drift that may have accumulated due to the scale ambiguity, by executing a
full bundle adjustment after automatic place recognition. Hence, specializing the algorithm to the specific
challenges that arise in spacecraft rendezvous will be the subject of further study.

V. Appendix

A. Brief Formulation of the SLAM Problem and ORB-SLAM Algorithm

The SLAM problem can be viewed as a general maximum likelihood estimation problem. To this end,
consider a set of N measurement vectors u1, u2, . . . uN , a set of unknown parameters Θ and a measure-
ment function h(Θ). Estimating Θ amounts to finding the most probable (and hence optimal) parameter
set Θ∗ that maximizes the likelihood (or, equivalently, minimizes the negative log-likelihood) of the func-
tion p(u1, . . . , uN |Θ). Assuming independence between the measurements, i.e., that p(u1, u2, . . . , uN ) =
p(u1)p(u2) . . . p(uN ), it follows that

Θ∗ = argmax
Θ

p(u1, . . . , uN |Θ) = argmax
Θ

N∏
i=1

p(ui|Θ) (12)

= argmin
Θ

−
N∑
i=1

log (p (ui|Θ)) . (13)

Furthermore, assuming that the likelihood function p(ui|Θ) follows a zero-meane Gaussian distribution, that
is,

p(ui|Θ) ∝ exp
(
(ui − hi(Θ))>Σ−1(ui − hi(Θ))

)
, (14)
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Figure 13. Test 1 Scaled Position and Orientation Comparison with VICON Ground Truth

with the measurement covariance matrix Σ, then the problem is reduced to a least-squares optimization
problem given by

Θ∗ = argmin
Θ

N∑
i=1

‖ui − hi(Θ)‖2Σ, (15)

where ‖∆‖2Σ = ∆>Σ−1∆.

The monocular pinhole camera projection function π : R2 × R 6=0 → R2 is defined as

π
(
[x y z]>

)
=
[
fx(x/z) + cx, fy(y/z) + cy

]>
(16)

where fx, fy ∈ R are the camera focal lengths, in number of pixels, and (cx, cy) ∈ R2 are the coordinates of
the optical center of the camera, in pixels, determined during an a-priori camera calibration step.

Consider a finite number of camera frames I, corresponding to images taken in a chronological sequence,
and note that to each such image frame i ∈ I is associated a camera pose given by

TN ,i
C/N =

[
Ri
C/N tN ,i

C/N

0 1

]
,

and a set of detected image keypoints Di, with each keypoint j ∈ Di possessing image coordinates uji ∈ R2 .

Let G = (K, E) denote a graph, consisting of a finite set of vertices K ⊆ I herein known as keyframes, (this
is a select group of camera frames over which the SLAM optimization by bundle adjustment is carried-out)
and a finite set of edges E ⊆ K×K that connect keyframes, thus encoding the structure of the multiple view
geometry.

Let Pk,P` ⊆ M be the set of map points which are visible in keyframes k, ` ∈ K, k 6= `, respectively. Then
keyframes k and ` are said to be co-visible if an edge e ∈ E exists between the two in G. An edge e is added
if there are at least Ncovisible common visible map points (co-visible), that is,

e =

(k, `) if |Pk ∩ P`| ≥ Ncovisible,

∅ otherwise,
(17)

13 of 17

American Institute of Aeronautics and Astronautics



1

1.5

z
(m

)

3

2.5 2.5

y (m)

2

x (m)

2
1.5

1.5 1

Initial Keyframe

ORB-SLAM Scaled Position

Map Points

Chaser Camera GT Position

Target GT Position
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where | · | : S → N denotes the cardinality of a set in S.

Let KL ⊆ K be the set of all co-visible keyframes. It follows that the set of all co-visible points PL is given
by

PL =
⋃

k∈KL

Pk. (18)

Let KF be the set of keyframes which have common visible points with all keyframes ` ∈ KL, excluding
keyframes within the set of possibly connected keyframes KL, that is,

KF = {k ∈ K : |Pk ∩ PL| > 0 and k /∈ KL} . (19)

In ORB-SLAM, the least-squares estimation problem is repeated for all ` ∈ KL, the set of co-visible frames,
and m ∈ PL, the set of points viewed in those co-visible frames, by applying a computationally efficient
sliding window scheme. Specifically, consider the pair (j, r) ∈ Jk ⊆ Dk × Pk matching keypoint j ∈ Dk

to map point r ∈ Pk, the image coordinates ujk ∈ R2 of keypoint j detected in keyframe k, the projected
image coordinates urk ∈ R2 of the of map point r, obtained by applying the camera projection mapping
π : R2 × R 6=0 → R2 to the position vector XCr ∈ R3 of the of map point r, expressed in camera frame C
coordinates, which in turn relates to the rigid-body transformation given by the rotation R`,C/N ∈ SO(3) and
translation tN`,C/N ∈ R3. Then the sum of the squared errors between ujk and urk is minimized by varying
the coordinates of the co-visible map points PL and the pose of the co-visible keyframes KL, while keeping
fixed the pose of keyframes KF , the set of all keyframes not in KL that share a number of common keypoints
under a certain threshold. The optimization problem is also programmed with the relevant SE(3)-related
constraints.

The whole problem can be written as a nonlinear program, for all m ∈ PL and ` ∈ KL

minimize
Xm, R`,C/N , tN

`,C/N

∑
k∈KL∪KF

∑
(j,r)∈Jk

ρ
(
‖ujk − urk‖2Σjk

)
,

subject to Xm ∈ R3,

R`
C/N ∈ SO(3),

tN ,`
C/N ∈ R3

(20)

where urk = π(Rk
C/NXr + tN ,k

C/N ), Xm is the position vector of point m expressed in the global frame

N coordinates, R`
C/N ∈ SO(3) is the camera frame orientation at keyframe ` with regards to frame N ,
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Figure 15. Test 2 Scaled Position and Orientation Comparison with VICON Ground Truth

tN ,`
C/N ∈ R3 is camera frame position vector at keyframe ` with regards to frame N expressed in global

coordinates, ρ : R → R is a robust Huber cost function,16 Σjk = σ2
jkI2 is the covariance matrix related to

the scale of the keypoint j in keyframe k, and ‖∆‖2Σ = ∆>Σ−1∆.

Let X∗m for m ∈ PL, and R∗,`C/N , t
∗,N ,`
C/N for ` ∈ KL, denote the optimal solution to problem (20). Then, when

tracking is enabled, X∗m provides the coordinates of a fixed map of scene points, which will subsequently be
used to extract the optimal pose of the camera frame at every image frame that does not correspond to any
keyframe k ∈ K of the graph G = (K, E). This process is called motion-only bundle adjustment.8

The ORB-SLAM Local BA requires an initialized map, which is automatically computed at the start of
the sequence using two image frames with sufficient parallax. Let D1 and D2 be the set of detected feature
points in the image frames when the camera is at frames N and C, respectively. Let J12 be the set of pairs
of indices corresponding points D1 to points in D2, with matching based on a heuristic involving the ORB
feature descriptor.9

Then, for (j, k) ∈ J12, uj ∈ R2 is the vector of image coordinates of point j ∈ D1 and uk ∈ R2 is the vector
of the image coordinates of point k ∈ D2, to which are associated the vectors of homogeneous coordinates
xj , xk ∈ P2, respectively.

If the scene is non-planar, then the transformation between xj and xk is explained by a fundamental matrix

F ∈ F =
{

([ t ]×R) : R ∈ SO(3), t ∈ R3
}
⊂ R3×3, where [ · ]× denotes the skew-symmetric matrix emulating

the left cross product. The transformation must satisfy the epipolar constraint for a non-planar scene

0 = x>k Fxj . (21)

F can be recovered from (21) by applying the 8-point algorithm.13

If the scene is planar in nature, the solution for the transformation between xj and xk obtained through the
8-point method recovering a fundamental matrix will be degenerate. However, the scene might be explained
by a homography matrix H ∈ R3×3, satisfying the epipolar constraint for a planar scene

0 = [xk ]×Hxj . (22)

H can be recovered from (22) using the Direct Linear Transformation (DLT) algorithm (4-point algorithm).13
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