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Abstract

A variation of the P2P strategy, known as egalitarian P2P (E-P2P) refueling strategy,
relaxes the restriction on the active satellites to return to their original orbital slots after
undergoing the fuel transactions. The E-P2P refueling problem can be formulated as a
three-index assignment problem on an undirected tripartite constellation graph, which can
be solved using, say, a Greedy Random Adaptive Search Procedure (GRASP). In this
paper we consider again the E-P2P problem, which we formulate as a minimum cost flow
problem on a directed graph, along with some additional constraints. The solution of the
corresponding integer program yields the optimal satellite assignment.

INTRODUCTION

The current practice when the fuel on-board a satellite is exhausted is to simply replace the
satellite with a new one. Replacing old satellites involves significant costs in production as well
as launching operations. An alternative to satellite replacement is to refuel a satellite when the
on-board fuel is depleted. Periodic refueling enhances the lifetime of satellite constellations.
The traditional approach for satellite refueling involves a single service vehicle that refuels all
fuel-deficient satellites in the constellation in a sequential manner.1 Recently, an alternative
scenario for distributing fuel amongst a large number of satellites has been proposed.2,3 In
this scenario, there is no designated spacecraft with the responsibility of refueling all satellites
depleted of fuel. Instead, all fuel-sufficient satellites share the responsibility of refueling the
fuel-deficient ones. We call this the P2P refueling strategy. The single service vehicle refueling
strategy and the P2P refueling strategy can be combined to form a mixed refueling strategy. In
a mixed refueling strategy a refueling spacecraft, either launched from the Earth or transferred
from a different orbit, refuels part of the satellites in the constellation, and these satellites
subsequently refuel the remaining fuel-deficient ones via P2P refueling. Such a mixed refueling
strategy can be a competitive alternative to the single-service vehicle refueling strategy and,
in fact, outperforms the latter for a large number of satellites in the constellation.4

In the standard P2P formulation,3–6 is assumed that all active satellites return to their
original orbital slots after the refueling process is over. In this paper, we relax this constraint
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and allow the active satellites to return to any available orbital slots left vacant by other (active)
satellites. We assume that all satellites are similar, that is, they have the same structure, same
operational characteristics, and perform the same functions, so that any satellite can be used
in lieu of any other satellite in the constellation. We call this the egalitarian P2P (E-P2P)
refueling strategy. In this paper, we show that the E-P2P refueling strategy leads to lesser fuel
expenditure during the refueling process, compared to the standard P2P refueling strategy.

The E-P2P strategy can be formulated as a three-index assignment problem on an undi-
rected tripartite constellation graph. Several sub-optimal heuristics exist for solving the three-
index assignment problem.7–9 Reference 10 discusses the application of a Greedy Random
Adaptive Search Procedure for determining the optimal scheduling for the E-P2P satellite
refueling strategy.

Typically, in a constellation graph, the nodes represent the satellites, and the edges rep-
resent the maneuvers between pairs of satellites. Since either of the two satellites involved in
a refueling transaction can be active, two different P2P maneuvers can be associated with a
satellite pair. Therefore, a sense of direction naturally comes along with each edge (the di-
rection being from the active satellite to the passive satellite), implying that the constellation
graph needs to be a directed one. In previous studies2,3, 5 this issue was bypassed by consid-
ering only the cheaper of the two maneuvers associated with a satellite pair. Hence the P2P
problem was formulated on an undirected constellation graph. In this paper, we reformulate
the E-P2P problem over a directed constellation graph (digraph). We show that this problem
can be posed as a minimum cost flow problem with additional constraints in the constellation
digraph. In the following sections, we describe in detail the problem formulation. With the
help of numerical examples we show that our proposed refueling strategy results in lesser fuel
expenditure, compared to the baseline P2P refueling strategy. We also provide a comparison
with the GRASP method of Ref. 10 and we show the numerical efficiency of the network flow
formulation.

PROBLEM FORMULATION

We consider a constellation with n satellites distributed over n orbital slots in a circular orbit.
Let S = {si : i = 0, 1, 2, . . . , n} denote the set of satellites, where s0 represents a fictitious
satellite. Let Φ = {φi ∈ [0, 2π) : i = 1, 2, . . . , n, φi �= φj} be the set of orbital slots. We
introduce a mapping σt : Φ �→ S that, at time t ≥ 0 assigns to each orbital slot a satellite from
S. Specifically, σt(φj) = si implies that the satellite si occupies the orbital slot φj at time t.
If the slot φj is empty at time t, we write σt(φj) = s0. Let the fuel content of satellite si at
time t be denoted by fi,t, let the minimum fuel content for satellite si to remain operational
be denoted by f

i
, and let the maximum fuel capacity of satellite si be f̄i. Let the initial fuel

content of satellite si be denoted by f−
i , that is, f−

i = fi,0. Satellites having an amount of fuel
more than or equal to the amount required to remain operational are termed fuel-sufficient,
while the ones having fuel less than the required amount to remain operational are termed
fuel-deficient satellites.

We follow a notation similar to that in Ref. 10. To this end, let I = {1, 2, . . . , n}, and
let Is,t = {i : fi,t ≥ f

i
} denote the index set of all fuel-sufficient satellites at time t, and
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Id,t = {i : fi,t < f
i
} denote the index set of all fuel-deficient satellites at time t. In a

P2P refueling transaction between a fuel-sufficient and a fuel-deficient satellite, one of them
(henceforth referred to as the active satellite) performs an orbital transfer to rendezvous with
the other satellite (henceforth referred to as the passive satellite). After a fuel exchange takes
place between the active and the passive satellite, the active satellite returns to one of the
available orbital slots. We will denote the index set of active satellites by Ia ⊆ I and the
index set of passive satellites by Ip ⊂ I. We also use Js,t = {j : σt(φj) = si, i ∈ Is,t}
to denote the index set of orbital slots occupied by fuel-sufficient satellites at time t, and
Jd,t = {j : σt(φj) = si, i ∈ Id,t} to denote the index set of orbital slots occupied by fuel-
deficient satellites at time t. Also, Ja = {j : σ0(φj) = si, i ∈ Ia} will denote the index set
of orbital slots occupied by the active satellites before any orbital maneuver commences, and
Jp = {j : σ0(φj) = si, i ∈ Ia} will denote the index set of orbital slots occupied by the
passive satellites before any orbital maneuver commences. Finally, let Jr denote the index set
of orbital slots available for the active satellites to return to after they have undergone fuel
transactions with the passive satellites. Note that Jr = Ja.

The Constellation Digraph

We define a tripartite constellation graph G consisting of three partitions. The first partition
consists of nodes that correspond to the elements of the index set Ja, the second partition
consists of nodes that correspond to the index set Jp and the third partition consists of nodes
that correspond to the index set Jr. Note that the set of active satellites and the set of passive
satellites are not known a priori. We therefore consider Ja = Jp = Jr = I. A directed edge
(i, j) where i ∈ Ja, j ∈ Jp denotes an orbital transfer from the orbital slot φi to the orbital slot
φj . Similarly, a directed edge (j, k) where j ∈ Jp, k ∈ Jr denotes an orbital transfer from the
orbital slot φj to the orbital slot φk. By an E-P2P maneuver, we mean that satellite sµ = σ0(φi)
performs an orbital transfer from slot φi to slot φj in order to undergo fuel exchange with the
satellite sν = σ0(φj). After the fuel exchange satellite sµ performs another orbital transfer from
the slot φj to an unoccupied orbital slot φk. Here the active satellite is sµ, while the passive
one is sν . The transfer from φi to φj constitutes the forward trip of sµ and the transfer from
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Figure 1: Directed constellation graph.
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φj to φk constitutes its return trip. We represent the E-P2P maneuver by the triplet (i, j, k).
On the constellation digraph G we represent an E-P2P maneuver (i, j, k) by the directed edges
(i, j) and (j, k), where i ∈ Ja, j ∈ Jp, and k ∈ Jr. Note that a fuel transaction can only be
between a fuel-sufficient and a fuel-deficient satellite, that is, for a E-P2P maneuver (i, j, k),
either i ∈ Js,0 and j ∈ Jd,0, or i ∈ Jd,0 and j ∈ Js,0. Therefore, the set of edges representing
all possible forward trips is given by

Ef = {(i, j) : i ∈ Js,0 ∩ Ja, j ∈ Jd,0 ∩ Jp} ∪ {(i, j) : i ∈ Jd,0 ∩ Ja, j ∈ Js,0 ∩ Jp}. (1)

The return maneuver from the orbital slot φj to the orbital slot φk, where k �= j, can be
represented by a directed edge (j, k) ∈ Jp × Jr, j �= k. We can therefore denote the set of all
possible return trips by

Er = {(j, k) : j ∈ Jp, k ∈ Jr, j �= k}. (2)

Thus, the set of nodes of the constellation digraph is given by V = Ja ∪Jp ∪Jr, while the set
of edges is given by E = Ef ∪ Er. We define the constellation digraph as G = (V, E). Figure 1
shows the digraph for a constellation, with nodes representing orbital slots of satellites and
edges representing orbital maneuvers. Note that a pair of directed edges (i, j) ∈ Ef and
(�, k) ∈ Er represents an E-P2P maneuver if and only if � = j.

Cost Assignment

With each orbital transfer represented by a directed edge (i, j) ∈ E , we associate a cost cij as
follows

cij = ∆Vij for all (i, j) ∈ E , (3)

where ∆Vij is the required velocity change for a satellite to transfer from the orbital slot φi

to the orbital slot φj . Note that the calculation of ∆Vij requires, in general, the solution of a
two-impulse multi-revolution Lambert problem.11

We should point out here that – ideally – the cost cij should be the fuel consumption during
the transfer. However, the amount of fuel depends on the mass of the satellite performing the
transfer, which may not be known a priori. For instance, recall that the edge (j, k) ∈ Er

represents a valid return trip for any of the E-P2P maneuvers in which an edge (i, j) ∈ Ef

represents a forward trip. The set of possible active satellites that can carry out the orbital
transfer from the slot φj to the slot φk is given by {σ0(φi) : (i, j) ∈ Ef}. For each of these
active satellites, the fuel expenditure for the return trip represented by the edge (j, k) ∈ Er is
different. Therefore, if fuel expenditure is used to define the cost of edges, no unique value can
be assigned to an edge (j, k) ∈ Er. This is the reason we use (3) for cij , tacitly recognizing the
fact that the results will necessarily be suboptimal in terms of actual fuel consumption.

Constellation Network Flow

Given the constellation digraph G, we will now set up the constellation network Gn and show
that the E-P2P problem can be formulated as a minimum cost flow problem on the constellation
network Gn. To this end, we add a source node s and a sink node t to the constellation digraph
G. For all i ∈ Ja, we also add an arc (s, i) with associated cost csi = 0. We denote the set of
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these arcs by Es. Similarly, for all k ∈ Jr, we add an arc (k, t) with associated cost ckt = 0.
We denote the set of these arcs by Et. The set of nodes for Gn is Vn = {s} ∪ V ∪ {t}, while the
set of arcs (directed edges) of Gn is En = Es ∪ E ∪ Et. That is, Gn = (Vn, En). A depiction of
Gn is given in Figure 2. Let us now consider a s → t flow in the network Gn. By a s → t flow,

3 3
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Figure 2: Constellation flow network.

we mean a flow from the source s to the sink t passing through the nodes i ∈ Ja, j ∈ Jp and
k ∈ Jr in that order, that is, a flow along the directed path {s → i → j → k → t}. Note that
the s → t flow passes through the arcs (s, i) ∈ Es, (i, j) ∈ Ef , (j, k) ∈ Er and (k, t) ∈ Et. Of
these, the arcs (i, j) and (j, k) constitute an E-P2P maneuver (i, j, k), and the sum of the costs
of all these edges is the total cost of the E-P2P maneuver (i, j, k). The remaining arcs (s, i) and
(k, t) have zero cost and therefore the cost of a unit flow along the path {s → i → j → k → t}
is the total cost of the corresponding E-P2P maneuver. We can therefore associate an E-P2P
maneuver with a unique s → t flow.

Network Flow Minimization Problem

Recall that we are interested in a set M ⊂ Ja ×Jp ×Jr of |Id,0| maneuvers such that all fuel-
deficient satellites are involved in fuel transactions. Corresponding to this set of maneuvers,
let AM = {i : (i, j, k) ∈ M} denote the set of indices of the orbital slots of active satellites, let
PM = {j : (i, j, k) ∈ M} denote the set of indices of the orbital slots of passive satellites, and
let RM = {k : (i, j, k) ∈ M} denote the set of indices of available return slots. We introduce
a flow variable xij for each arc (i, j) ∈ En. The flow variable xij equals the amount of flow
through the edge (i, j). The capacity uij of each edge is the maximum amount of flow that is
permissible through that edge, that is, 0 ≤ xij ≤ uij . We assume uij = 1 for all (i, j) ∈ En. In
addition, let bi denote the amount of supply at node i ∈ Vn, such that bi < 0 denotes demand
at that node. For all nodes i ∈ N\{s, t}, we have bi = 0. For the source and sink nodes, we
have bs = |Id,0| and bt = −|Id,0|, respectively. This implies that we wish to send a flow equal
to |Id,0| through the network from the source to the sink, given that no edge allows more than
one unit of flow through it.

All nodes in the constellation network Gn are required to satisfy the usual flow balance
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equations ∑

j:(i,j)∈En

xij −
∑

j:(j,i)∈En

xji = bi for all i ∈ Vn. (4)

However, our initial consideration Ja = Jp = Jr = I requires the introduction of additional
constraints. First, note that AM = RM. Hence, if the flow passes through a node i ∈ Ja, then
the flow has to pass through the node i ∈ Jr. Moreover, if the flow does not pass through the
node i ∈ Ja, no flow should then pass through i ∈ Jr. This constraint can be written as

xsi = xit for all i ∈ Ja = Jr. (5)

Second, note that i ∈ AM implies i /∈ PM. Hence, the network should not allow two s → t
flows, one that passes through node i ∈ Ja and the other that passes through i ∈ Jp. That
is, the satellite originally occupying the orbital slot φi cannot be simultaneously the active
satellite and the passive satellite with respect to two different P2P maneuvers. This implies
the following constraint

xsj +
∑

i:(i,j)∈Ef

xij ≤ 1 for all j ∈ Jp. (6)

Finally, given the constellation network Gn, we seek to find the minimum cost flow in the
network

min
∑

(i,j)∈En

cijxij (7)

subject to the constraints (4)-(6). It is to be noted here that the integrality property 12 states
that if all arc capacities and supplies/demands of the nodes are integers, the minimum cost
flow problem has an integral optimal solution, that is, although we allow 0 ≤ xij ≤ 1 for all
(i, j) ∈ En, the minimum cost flow ensures that xij = 0 or 1 in the solution. In other words, we
can arrive at the optimal solution by considering only integer values of the decision variables.
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Figure 3: Constellation flow network with an additional (t, s) arc.

Note that in Fig. 2 the source sends a total flow equal to |Id,0| to the sink via the network.
Since the capacity of each edge is unity, the minimum cost flow will be comprised of |Id,0|
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flows from s tot, and these will correspond to the optimal assignment M∗. We now prove that
the configuration of the network assures that all fuel-deficient satellites are involved in fuel
transactions. The flow from the sink reaches |Id,0| nodes in Ja. Clearly, these nodes are given
by AM∗ and |AM∗ | = |Id,0|. The indices of the original orbital slots of the active fuel-sufficient
satellites are given by AM∗ ∩ Js,0 and those for the active fuel-deficient satellites are given
by AM∗ ∩ Jd,0. The set of nodes in Jp through which the flow passes are given by PM∗ .
Evidently, the indices of the original orbital slots of the passive fuel-sufficient satellites are
given by PM∗ ∩Js,0, while those of the passive fuel-deficient satellites are given by PM∗ ∩Jd,0.
Because a fuel transaction can only be between a fuel-sufficient and a fuel-deficient satellite,
the number of passive fuel-deficient satellites will equal the number of active fuel-sufficient
satellites, that is, we have |PM∗ ∩ Jd,0| = |AM∗ ∩ Js,0|. However, the total number of active
satellites is |Id,0|, so that we have |AM∗ ∩ Js,0| + |AM∗ ∩ Jd,0| = |Id,0|. It follows that
|AM∗ ∩ Jd,0| + |PM∗ ∩ Jd,0| = |Id,0|, which implies that the flow from the source reaches all
nodes corresponding to the orbital slots of all fuel-deficient satellites. In other words, all fuel-
deficient satellites are involved in fuel transaction during the E-P2P maneuvers represented by
the optimal flow in the network.

Remark 1. Note that in the network flow formulation for the E-P2P problem, the supply or
demand at each node representing an orbital slot of a satellite is zero. If we now let bs = bt = 0,
but add an arc (t, s) in the network Gn and impose a flow |Id,0| through this arc from the sink
to the source, then the problem remains unaltered. All nodes in the augmented network (see
Fig. 3) now have zero demand/supply and the flow in the network has to be a circulation. We
know that a circulation can always be decomposed into cycles.12 Hence, the optimal cost flow
should be in the form of cycles.

NUMERICAL EXAMPLES

In this section, we determine the optimal assignments for P2P refueling of sample constel-
lations when the active satellites are not restricted to return to their original orbital slots.
The determination of the optimal assignments requires the solution of the integer program
corresponding to the minimum cost flow problem (given by (7),(4)-(6)). Its solution was ob-
tained using the binary integer programming solver (bintprog) of MATLAB. This solver uses
branch-and-bound to solve integer programs. The fuel expenditure incurred during the or-
bital transfers given by the optimal assignment of the E-P2P strategy can be calculated as
in Ref. 10. We also compare the results against the baseline P2P strategy, namely, when the
active satellites are constrained to return to their original orbital slots. With the help of nu-
merical examples, we show how the E-P2P refueling strategy leads to considerable reductions
in fuel expenditure. The sample constellations investigated in this section are given in Table 1.

7



Table 1: Sample Constellations.

Label Description
C1 10 satellites, Altitude = 35, 786 Km, T = 12

f−
i : 30, 30, 6, 6, 6, 6, 6, 30, 30, 30

f̄i = 30, f
i
= 12, msi = 70 for all satellites

C2 16 satellites, Altitude = 1, 200 Km, T = 30
f−

i : 30, 30, 30, 30, 30, 30, 10, 10, 10, 10, 10, 10, 10, 10, 30, 30
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C3 12 satellites, Altitude = 2, 000 Km, T = 30
f−

i : 30, 30, 30, 10, 10, 10, 10, 10, 10, 30, 30, 30
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C4 18 satellites, Altitude = 6, 000 Km, T = 25
f−

i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C5 12 satellites, Altitude = 12, 000 Km, T = 20
f−

i : 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C6 14 satellites, Altitude = 1, 400 Km, T = 35
f−

i : 25, 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C7 16 satellites, Altitude = 30, 000 Km, T = 15
f−

i : 10, 10, 10, 10, 10, 10, 10, 10, 28, 28, 28, 28, 28, 28, 28, 28
f̄i = 30, f

i
= 15, msi = 70 for all satellites

Example 1.

Consider the constellation C1 given in Table 1. This constellation consists of 10 satellites
evenly distributed in a circular orbit. The maximum allowed time for refueling is T = 12
orbital periods. Each satellite si has a minimum fuel requirement of f

i
= 12 units, while their

maximum amount of fuel each can hold is f̄i = 30 units. Each satellite si has a permanent
structure of msi = 70 units, and a characteristic constant of c0i = 2943 m/s. The indices of
the fuel-sufficient satellites are Is,0 = {1, 2, 8, 9, 10} and those of the fuel-deficient satellites
are Id,0 = {3, 4, 5, 6, 7}. For the baseline P2P refueling strategy, the optimal assignment is
s4 → s1, s5 → s2, s7 → s8, s6 → s9, s3 → s10, and the total fuel consumption for all P2P
maneuvers is 26.07 units. This represents 14.48% of the total initial fuel in the constellation.
The indices of the active satellites in this case are Ia = {3, 4, 5, 6, 7}. Note that Ia = Id,0, that
is, the fuel-deficient satellites are the active ones for the baseline P2P refueling strategy. The
baseline P2P assignment assignments is shown in Fig. 4(a). The active satellites are marked
by ’�’. The forward trips are marked by solid arrows, while the return trips are marked by
dotted arrows.

For the case in which the active satellites are allowed to interchange their orbital slots,
the optimal assignment for E-P2P refueling is s1 → s3 → s2, s2 → s4 → s5, s5 → s8 → s9,
s7 → s10 → s1, s9 → s6 → s7. The fuel expenditure during the E-P2P refueling process is
19.11 units, which is less than the fuel expenditure for the baseline P2P case. This represents
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Figure 4: Optimal assignments for Constellation C1

10.62% of the total initial fuel in the constellation. Figure 4(b) shows the optimal assignments
for the E-P2P case. For the optimal assignment for the proposed E-P2P refueling strategy, it is
observed that each active satellite, after undergoing a fuel transaction with the corresponding
passive satellite, returns to an available orbital slot in the vicinity of the passive satellite with
which it was involved in the transaction. For instance, satellite s1 undergoes a fuel transaction
with satellite s3, and then returns to the orbital slot initially occupied by active satellite s2.
Moving to an orbital slot in the vicinity involves an orbital transfer through a smaller transfer
angle and thereby likely results in a lesser fuel expenditure during the return trip. Hence, the
active satellites, having the freedom to return to any available orbital slot, they opt to move to
a nearby orbital slot during the return trip. In the baseline P2P strategy, such freedom is not
available, and some of the active satellites have to perform orbital transfers that incur higher
cost. Another observation is the fact that some of the active satellites are also fuel-sufficient.
For instance, satellites s1, s2 and s9 are fuel-sufficient and active. Figure 4(b) also shows that
the optimal solution comprises of a Hamiltonian cycle {s1 → s3 → s2 → s4 → s5 → s8 → s9

→ s6 → s7 → s10 → s1} in the constellation.

Example 2.

In this example, we consider the constellation C2 given in Table 1. This is a constel-
lation of 16 satellites, evenly distributed in a circular orbit. The maximum allowable time
for refueling is T = 30 orbital periods. Each satellite si has a minimum fuel requirement of
f

i
= 15 units, a maximum fuel capacity of f̄i = 30 units, permanent structure of msi = 70

units and a characteristic constant of c0i = 2943 m/s. The indices of the fuel-sufficient satel-
lites are Is,0 = {1, 2, 3, 4, 5, 6, 15, 16}, while those of the fuel-deficient satellites are Id,0 =
{7, 8, 9, 10, 11, 12, 13, 14}. If the active satellites are constrained to return to their original or-
bital slots after refueling, the optimal assignment is s11 → s1, s12 → s2, s9 → s3, s7 → s4,
s8 → s5, s10 → s6, s13 → s15, s14 → s16 and the total fuel consumption is 37.46 units. This
represents 11.71% of the total initial fuel in the constellation. In this case, only the fuel-
deficient satellites are the active ones, that is, Ia = {7, 8, 9, 10, 11, 12, 13, 14} = Id,0. This is
similar to the previous example. The standard P2P assignment for C2 is shown in Fig. 5(a).
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Figure 5: Optimal assignments for Constellation C2

If the active satellites are allowed to interchange orbital slots, then the optimal assignment is
s1 → s12 → s13, s3 → s7 → s6, s5 → s8 → s9, s6 → s10 → s11, s9 → s4 → s5, s11 → s15 → s14,
s13 → s16 → s1, s14 → s2 → s3. Here, Ia = {1, 3, 5, 6, 9, 11, 13, 14}. Relaxing the return orbital
position constraint reduces the fuel expenditure to 24.82 units. This represents 7.76% of the
total initial fuel in the constellation. Figure 5(b) shows the constellation and the optimal as-
signments for the E-P2P case. The active satellites are marked by ’�’. Similar to Example 1, it
is observed that the active satellites, after undergoing fuel transactions with the corresponding
passive satellites, return to an available orbital slot in their vicinity. For instance, satellite s1

undergoes a fuel transaction with satellite s12, and then returns to the orbital slot occupied
by active satellite s13. Also, note that the active satellites include fuel-sufficient ones. Here,
s1, s3, s5 and s6 are fuel-sufficient and active. Figure 5(b) shows that the optimal solution
corresponds to three cycles in the constellation, namely, {s1 → s12 → s13 → s16 → s1},
{s3 → s7 → s6 → s10 → s11 → s15 → s14 → s2 → s3} and {s5 → s8 → s9 → s4 → s5}.

We have also tested the proposed methodology on other constellations as depicted in Ta-
ble 1. The optimal assignments for these constellations show considerable reduction in fuel
consumption against the baseline P2P strategy. For instance, for constellation C3, the baseline
P2P refueling strategy yields an optimal assignment s4 → s1, s5 → s2, s7 → s10, s6 → s3,
s11 → s8, s9 → s12 with a fuel expenditure of 26.73 units, with the fuel-deficient satellites be-
ing the active ones. Our proposed methodology yields the optimal assignment s1 → s4 → s5,
s3 → s6 → s7, s5 → s2 → s3, s7 → s10 → s11, s9 → s12 → s1, s11 → s8 → s9, that reduces the
fuel expenditure to 18.87 units. In this case, the optimal solution consists of a Hamiltonian
cycle {s1 → s4 → s5 → s2 → s3 → s6 → s7 → s10 → s11 → s8 → s9 → s12 → s1}. Similarly,
for the other constellations, the fuel expenditure reduces from 41.06 units to 26.26 units in
case of C4, from 28.38 to 18.87 in case of C5, from 28.77 units to 19.26 units in case with C6,
and from 34.97 units to 22.75 units in case of C7. Figure 6 summarizes these results.
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Figure 6: Comparison of E-P2P and baseline P2P refueling strategies.

Comparison with GRASP

We now compare the results obtained using the network flow formulation with those given by
the GRASP method10 for the constellations given in Table 1. Such a comparison is depicted in
Fig. 7. For constellations C2 and C4, the optimal assignment is the same for both methods. For
C1, C3, C5, C6 and C7, the results using GRASP are better than those given by the network
flow formulation. This is to be expected since GRASP in most of the cases finds the actual
optimal solution.

An important aspect that needs to be mentioned here is the computational time required
to determine the optimal assignment. Figure 8 compares the computational time required by
the two methods. The network flow formulation runs several times faster than the GRASP
method. Nevertheless, it needs to be mentioned that the GRASP method has capabilities
for parallelization which can decrease its running time. Parallel implementation issues of the
GRASP have not been considered in our work. As a final point we should also mention that the
GRASP method requires a good initial feasible solution that is improved upon in subsequent
steps of the GRASP. The solution obtained by the network flow formulation can be used as
an initial feasible solution that can speed up the GRASP by several orders of magnitude.

CONCLUSIONS

In this paper, we have studied the egalitarian peer-to-peer (E-P2P) refueling strategy for
satellite constellations, in which the active satellites are allowed to interchange orbital positions
during their return trip. A directed constellation graph is introduced in order to take into
account the direction in which the orbital maneuvers are executed. The problem is formulated
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Figure 7: Comparison with results from GRASP method.

as a minimum cost network flow problem with additional constraints. The solution of the
corresponding integer program yields the optimal assignment for the E-P2P strategy. With the
help of numerical examples, it is shown that the proposed E-P2P strategy results in considerable
reduction in the fuel expenditure incurred during the refueling process. It is also shown that
each active satellite opts to return to an available orbital slot in the vicinity of the passive
satellite with which it is involved in a fuel transaction. The results obtained using the network
flow formulation are found to be comparable to those obtained using the GRASP method,
however the optimal assignments using the network flow formulation are faster to compute
than those using GRASP.
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