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A GREEDY RANDOM ADAPTIVE SEARCH PROCEDURE

FOR OPTIMAL SCHEDULING OF P2P SATELLITE

REFUELING

Atri Dutta∗ and Panagiotis Tsiotras†

Abstract

All studies of peer-to-peer (henceforth abbreviated as P2P) satellite refueling so far
assume that all active satellites return back to their original orbital positions after under-
going fuel exchanges with the passive satellites. In this paper, we remove this restriction
on the active satellites, namely, we allow the active satellites to interchange orbital slots
during the return trips. We formulate the problem as a three-index assignment problem
in a tripartite constellation graph. We use a greedy random adaptive search procedure
(GRASP) to determine the optimal P2P refueling schedule between the active and the
passive satellites. It is shown that the proposed methodology leads to considerable fuel
reduction over the baseline P2P refueling strategy.

INTRODUCTION

The lifespan of satellite constellations can be extended by periodic refueling of the satellites
in the constellation. The traditional approach for satellite refueling involves a single service
vehicle refueling all fuel-deficient satellites in the constellation in a sequential manner. Several
studies have been performed on the problem of servicing multiple satellites in a constellation.1

Recently, an alternative scenario for distributing fuel amongst a large number of satellites has
been proposed.2,3 In this scenario, no single spacecraft is in charge of the whole refueling
process. Instead, all satellites share the responsibility of refueling each other on an equal
footing. We call this the peer-to-peer (P2P) refueling strategy.3 Studies have also been per-
formed on mixed refueling strategies, in which the P2P refueling is an integral component.4,5

It has been shown that a mixed refueling strategy is a competitive alternative to the single
service vehicle refueling strategy, outperforming the latter for a large number of satellites in
the constellation.4 Additional extensions, namely, the coasting time allocation strategy and
the asynchronous P2P refueling strategy,5 have also been developed. These extensions result
in considerable reduction of the fuel expenditure in mixed refueling scenarios.

In all of the above-mentioned studies, P2P refueling was perceived as a means to equalize
fuel in the constellation. In order to achieve fuel equalization in the constellation, an optimiza-
tion problem was formulated, such that the deviation of each satellite’s fuel from the initial
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average fuel in the constellation is penalized. Under such a formulation, the problem of finding
optimal pairings of satellites reduces to a problem of finding the maximum weighted matching
in the so-called constellation graph. This maximum matching problem can be solved using
standard methods.6 A decentralized approach that uses auctions has also been reported in Ref
7.

An alternative formulation for the P2P refueling problem is to impose a minimum fuel
requirement for each satellite in the constellation in order to remain operational. Satellites
having the required amount of fuel are fuel-sufficient, while those which do not have the
required amount of fuel are fuel-deficient. We therefore seek to determine the optimal pairings
of satellites so that all satellites end up being fuel-sufficient at the end of the refueling process.
This is to be achieved by using as little fuel as possible in the process. In all studies of P2P
refueling so far, the active satellites have been constrained to return to their original positions.
In this paper, we relax this constraint. Namely, we allow the active satellites to interchange
their orbital positions in the constellation after the refueling of the passive satellites has been
completed.

When the active satellites are constrained to return to their original orbital positions, the
problem of P2P refueling can be solved as a two-index assignment problem on a bipartite
graph, between the fuel-sufficient and fuel-deficient satellites. The assignment between the
fuel-sufficient and fuel-deficient satellites completely determines the P2P maneuvers. In the
current formulation of the P2P refueling problem, this is not the case however. Since the
active satellites are allowed to interchange orbital slots during their return trip, the assignment
between fuel-sufficient satellites and fuel-deficient satellites only determines the forward trip.
We also need to assign each refueling transaction to an available orbital slot for the active
satellite to return. We therefore need to consider three entities in order to completely define
a P2P maneuver. These entities are the fuel-sufficient satellite, the fuel-deficient satellite, and
the orbital slot the active satellite will return to. The P2P refueling problem can therefore be
posed as a three-index assignment problem.

It is known that the three-index assignment problem is NP-complete.8 The general multi-
index assignment problem was first stated by Pierskalla9 as an extension of the two-index
assignment problem. The three dimensional assignment problem, which is a special case of
the multi-index assignment problem, can be viewed as a matching problem on a complete
tripartite graph. Several sub-optimal algorithms have been proposed for this problem. A
branch-and-bound algorithm was proposed to solve the three-index assignment problem by
Balas and Saltzman.10 Approximation algorithms for three-index assignment problems with
triangle inequalities were addressed by Crama and Spieksma.11 For multi-index assignment
problems in k-partite graphs with decomposable costs§, Bandelt, Crama and Spieksma12 intro-
duced two approximate algorithms, each of which solves a sequence of two-index assignment
problems. Another class of algorithms that has been developed for solving the three-index
assignment problem includes the Greedy Random Adaptive Search Procedure (GRASP).13–15

Feo and Resende13 discussed GRASP as a means for solving general combinatorial optimization
problems. Robertson14 introduced four GRASP implementations for the multi-index assign-
ment problem, which are combinations of two constructive methods (i.e., randomized reduced
cost greedy, and randomized maximum maximum regret) and two local search methods (i.e.,

§By decomposable costs, we mean that the cost of a clique in the k-partite graph is a function of the cost
of the edges induced by the clique. Note that a clique is a subgraph in which all vertices are pairwise adjacent.
For a k-partite graph, a clique comprises of exactly one node from each partition of the k-partite graph.
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two-assignment exchange, and variable depth exchange). Aiex et al.15 proposed the use of
GRASP with path relinking. This method was able to improve the quality of the heuristic
solutions proposed in Refs. 10 and 12. Moreover, the GRASP method is shown to benefit from
parallelization.

In this paper, we apply the GRASP method for solving the P2P refueling problem, under
the assumption that the active satellites are allowed to interchange their orbital positions after
they have refueled the passive satellites. However, since our problem deviates from the standard
three-index assignment problem, we need to incorporate additional validation steps when we
construct a basic feasible solution for an instance of our problem. These steps are explained
in great detail later on in the section that discusses the three-index assignment problem.

PROBLEM FORMULATION

We consider a constellation with n satellites distributed over n orbital slots in a circular orbit.
Let S = {si : i = 0, 1, 2, . . . , n} denote the set of satellites, where s0 represents a fictitious
satellite, and let Φ = {φi ∈ [0, 2π) : i = 1, 2, . . . , n, φi �= φj} be the set of orbital slots. We
introduce a mapping σt : Φ �→ S that, at time t, assigns to each orbital slot a satellite from
S. Specifically, σt(φj) = si implies that the satellite si occupies the orbital slot φj at time t.
If the slot φj is empty at time t, we write σt(φj) = s0. We designate the constellation by the
triplet C = {S, Φ, σt≥0}. Let the fuel content of satellite si at time t be denoted by fi,t and
let the minimum fuel content for satellite si in order to remain operational be denoted by f

i
.

Finally, let the initial fuel content of satellite si be denoted by f−
i , that is, f−

i = fi,0. Satellites
having amount of fuel more than or equal to the amount required to remain operational are
termed fuel-sufficient, while the ones having fuel less than the required amount are termed
fuel-deficient satellites. In a P2P refueling strategy, the fuel-sufficient and the fuel-deficient
satellites undergo fuel transactions amongst themselves, such that, at the end of refueling, each
satellite has at least the required amount of fuel in order to remain operational.

It will be convenient to keep track of the indices of the satellites participating in the refueling
process under different roles. To this end, let I = {1, 2, . . . , n}, and let Is,t = {i : fi,t ≥ f

i
}

denote the index set of all fuel-sufficient satellites at time t, and let Id,t = {i : fi,t < f
i
}

denote the index set of all fuel-deficient satellites at time t. In a P2P refueling transaction
between a fuel-sufficient and a fuel-deficient satellite, one of them (henceforth referred to as the
active satellite) performs an orbital transfer to rendezvous with the other satellite (henceforth
referred to as the passive satellite). After a fuel exchange takes place between the active and
the passive satellite, the active satellite returns to one of the available orbital slots. We will
denote the index set of active satellites by Ia ⊆ I and the index set of the passive satellites by
Ip ⊂ I.

Our current problem formulation assumes that after refueling a passive satellite, each active
satellite is allowed to return to any orbital slot that has been left vacant by another active
satellite. For convenience, let Js,t = {j : σt(φj) = si, i ∈ Is,t} denote the index set of orbital
slots occupied by fuel-sufficient satellites at time t, let Jd,t = {j : σt(φj) = si, i ∈ Id,t}
denote the index set of orbital slots occupied by fuel-deficient satellites at time t, and let
Ja = {j : σ0(φj) = si, i ∈ Ia} denote the index set of orbital slots occupied by the active
satellites before any orbital maneuver commences. We therefore define a complete tripartite
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constellation graph G consisting of three partitions. The first partition consists of nodes that
correspond to the elements of the index set Js,0. The second partition consists of nodes that
correspond to the elements of the index set Jd,0, and the third partition consists of nodes
that correspond to the elements of the index set Ja. Therefore, nodes of G are given by
Js,0 ∪ Jd,0 ∪ Ja and the edges of G are all edges induced by triplets in Js,0 × Jd,0 × Ja, that
is, G = {Js,0 ∪Jd,0 ∪Ja,Js,0 ×Jd,0 ×Ja}. Let us consider a triplet (i, j, k) ∈ Js,0 ×Jd,0 ×Ja.
We say that the triplet (i, j, k) is feasible if the satellites σ0(φi) and σ0(φj) can engage in a
feasible P2P refueling maneuver, that is, the active satellite (which can be either σ0(φi) or
σ0(φj)) rendezvous with the passive satellite, exchanges fuel, and then returns to the orbital
slot initially occupied by the active satellite σ0(φk), such that both σ0(φi) and σ0(φj) end up
being fuel-sufficient at the end of the process. Let T ⊆ Js,0 × Jd,0 × Ja denote the set of all
feasible triplets in the constellation graph G.

Maneuver Costs and Feasible Triplets

Let us consider a triplet (i, j, k) ∈ Js,0 × Jd,0 × Ja in the constellation graph G. Also, let the
satellite sµ occupy the orbital slot φi at time t = 0 and the satellite sν occupy the orbital slot
φj at time t = 0. Hence, sµ = σ0(φi) and sν = σ0(φj). Without loss of generality, assume
sµ to be a fuel-sufficient satellite and sν to be a fuel-deficient satellite, that is, µ ∈ Is,0 and
ν ∈ Id,0. Either of the two satellites may be active during a refueling transaction between
the two satellites. Hence, two different P2P refueling transactions are possible for the triplet
(i, j, k).

In the first case, the fuel-sufficient satellite is active, that is, the satellite sµ performs the
orbital maneuver to rendezvous with the passive satellite sν . Therefore, µ ∈ Ia ∩ Is,0 and
ν ∈ Ip∩Id,0. After a fuel exchange takes place between the two satellites, sµ performs another
orbital maneuver and moves to the orbital slot φk initially occupied by the active satellite
σ0(φk). Note that k ∈ Ja and k �= j. The fuel consumed by the active satellite sµ to transfer
from the orbital slot φi to the orbital slot φj is given by:

pµ
ij =

(
msµ + f−

µ

) (
1 − e

−∆Vij
c0µ

)
, (1)

where msµ is the mass of the permanent structure of satellite sµ, and ∆Vij is the optimal
velocity change required for a two-impulse transfer from the orbital slot φi to the orbital slot
φj . The parameter c0µ is defined by c0µ = g0Ispµ, where g0 is the acceleration due to gravity
at the Earth’s surface and Ispµ is the specific thrust of satellite sµ. The fuel content of satellite
sµ after its forward trip (but before fuel exchange takes place) is f−

µ − pµ
ij . Since the fuel

consumption during the maneuver is minimized if the active satellite returns with exactly the
required minimum amount of fuel to remain operational, the amount of fuel consumed during
the return trip, during which satellite sµ travels from φj to φk, is given by

pµ
jk =

(
msµ + f

µ

)
e

∆Vjk
c0µ

(
1 − e

−∆Vjk
c0µ

)
, (2)

where ∆Vjk is the optimal velocity change required for the transfer from the orbital slot φj

to the orbital slot φk. Before the return trip (but after the fuel exchange takes place), the
fuel on board satellite sµ is f

µ
+ pµ

jk. The fuel transferred to satellite sν during the fuel
exchange is (f−

µ − pµ
ij) − (f

µ
+ pµ

jk), assuming that the satellite sν has enough fuel capacity
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to accommodate this amount of fuel. The fuel on board satellite sν after it is refueled is
f−

ν + (f−
µ − pµ

ij) − (f
µ

+ pµ
jk). In order for satellite sν to become fuel-sufficient after the fuel

transaction, we must therefore have,(
f−

ν + f−
µ

)
−

(
f

µ
+ f

ν

)
≥ pµ

ij + pµ
jk. (3)

If the above condition does not hold, then the P2P refueling transaction between sµ and sν

is not feasible. Also, if satellite sµ does not have enough fuel to carry out the orbital transfer
during the forward trip, that is, if pµ

ij ≥ f−
µ , then the P2P refueling transaction is also not

feasible. Let c1 (i, j, k) denote the cost of a P2P maneuver for the case when the fuel-sufficient
satellite is active. Then c1 (i, j, k) is given by the sum of (1) and (2). We therefore have,

c1 (i, j, k) =

{
pµ

ij + pµ
jk, if pµ

ij < f−
µ and pµ

ij + pµ
jk ≤

(
f−

µ + f−
ν

)
−

(
f

µ
+ f

ν

)
,

∞, otherwise.
(4)

In the second case, the fuel-deficient satellite is active, that is, satellite sν performs the
orbital maneuver to rendezvous with the passive satellite sµ. Therefore, µ ∈ Ip ∩ Is,0 and
ν ∈ Ia∩Id,0. After a fuel exchange takes place between the two satellites, sν performs another
orbital maneuver and travels to the orbital slot φk initially occupied by the active satellite
σ0(φk). Note that k ∈ Ja and k �= i. The fuel consumed for the active satellite sν to transfer
from the orbital slot φi to the orbital slot φj is given by

pν
ji =

(
msν + f−

ν

) (
1 − e

−∆Vji
c0ν

)
, (5)

where msν is the mass of the permanent structure of satellite sν , and ∆Vji is the optimal
velocity required for the transfer from the orbital slot φj to the orbital slot φi. The fuel
content of satellite sν after its forward trip (but before fuel exchange takes place), is f−

ν − pν
ji.

The amount of fuel consumed during the return trip, during which the satellite sν travels from
the orbital slot φi to the orbital slot φk, is given by

pν
ik =

(
msν + f

ν

)
e

∆Vik
c0ν

(
1 − e

−∆Vik
c0ν

)
, (6)

where ∆Vik is the optimal velocity change required for the transfer from the orbital slot φi

to the orbital slot φk. Before the return trip (but after the fuel exchange takes place), the
fuel on board satellite sν is f

ν
+ pν

ik. The fuel transferred to satellite sν during the fuel
exchange is (f

ν
+ pν

ik) − (f−
ν − pν

ji). The fuel on board satellite sµ after the fuel transaction
is f−

µ − (f
ν

+ pν
ik) + (f−

ν − pν
ji). In order for the satellite sµ to be fuel-sufficient after the fuel

transaction, we must have (
f−

µ + f−
ν

)
−

(
f

ν
+ f

µ

)
≥ pν

ji + pν
ik. (7)

If the above condition does not hold, then a P2P refueling transaction between sµ and sν is
not feasible. Also, if the satellite sν does not have enough fuel to carry out the orbital transfer
during the forward trip, that is, if pν

ji ≥ f−
ν , then the P2P refueling transaction is also not

feasible. Let c2 (i, j, k) denote the cost of a P2P maneuver for the case when the fuel-deficient
satellite is active. Then, c2 (i, j, k) is given by the sum of (5) and (6). We therefore have,

c2 (i, j, k) =

{
pν

ji + pν
ik, if pν

ji < f−
ν and pν

ji + pν
ik ≤

(
f−

µ + f−
ν

)
−

(
f

ν
+ f

µ

)
∞, otherwise.

(8)

5



Of the two possible P2P maneuvers associated with the triplet (i, j, k), the cheaper one is
of interest to us. To this end, let the total fuel expenditure incurred in the P2P maneuver
associated with the triplet (i, j, k) be given by

c (i, j, k) =

{
c1 (i, j, k) , if c1 (i, j, k) ≤ c2 (i, j, k)
c2 (i, j, k) , otherwise.

(9)

We therefore associate with each triplet (i, j, k) ∈ Js,0×Jd,0×Ja a single P2P maneuver. The
set of all feasible triplets is then defined as T = {(i, j, k) ∈ Js,0 × Jd,0 × Ja : c (i, j, k) < ∞}.
Let now Act : T �→ I be a function that returns the index of the orbital slot of the active
satellite, that is,

Act (i, j, k) =

{
i, if c1 (i, j, k) ≤ c2 (i, j, k)
j, otherwise.

(10)

Similarly, let Pas : T �→ I be a function that returns the index of the orbital slot of the passive
satellite, that is,

Pas (i, j, k) =

{
j, if c1 (i, j, k) ≤ c2 (i, j, k)
i, otherwise.

(11)

Moreover, the edges induced by the triplets that are not feasible can be removed from the graph
G in order to yield a reduced constellation graph Gr. Therefore, Gr = {Js,0 ∪ Jd,0 ∪ Ja, T }.
Henceforth, we restrict our discussion to the reduced constellation graph Gr.

Using equations (1), (2), (5) and (6), we can ascertain the cost of a triplet (i, j, k) ∈ T
using (9). Notice that the calculation of the optimal costs ∆Vij , ∆Vji, ∆Vjk and ∆Vki in
Equations (1), (2), (5) and (6) requires, in general, the solution of the two-impulse multi-
revolution Lambert problem.16

The Three-Index Assignment Problem

Since our goal is to refuel all fuel-deficient satellites, each of them should be part of a feasible
fuel transaction. We therefore seek a set of exactly |Id,0| feasible triplets M∗ ⊆ T in the
reduced constellation graph Gr such that none of the triplets in M∗ share a common vertex or
a common edge, and such that the sum of the costs of all these triplets is minimum.

To this end, let M ⊆ T be a set that consists of |Id,0| triplets. To each triplet (i, j, k) ∈ T
we associate the binary variable xijk as follows

xijk =

{
1, if (i, j, k) ∈ M,
0, otherwise.

(12)

We can therefore formulate the problem of finding the set of feasible triplets M ⊆ T that yield
the minimum cost as follows

min
M⊆T

∑
(i,j,k)∈M

c (i, j, k)xijk, (13)

such that ∑
j∈Jd,0

∑
k∈Ja

xijk ≤ 1, for all i ∈ Js,0, (14)
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∑
i∈Js,0

∑
k∈Ja

xijk = 1, for all j ∈ Jd,0, (15)

∑
i∈Js,0

∑
j∈Jd,0

xijk ≤ 1, for all k ∈ Ja, (16)

r �= Pas(i, j, k) for all (i, j, k) , (p, q, r) ∈ M. (17)

Constraint (14) signifies that not all fuel-sufficient satellites have to be part of P2P refueling
transactions, because we may have |Is,0| > |Id,0|. Constraint (15) implies that each fuel-
deficient satellite must be part of exactly one P2P fuel transaction. Constraint (16) signifies
that each of the slots left vacant by the active satellites needs to be assigned to a P2P refueling
transaction. Note that the set of active satellites is not known a priori. We only know that
Ja ⊂ I. For solving our problem, we use Ja = I for the third partition of the constellation.
Therefore, not all nodes of the third partition correspond to orbital slots of active satellites.
Hence, the inequality sign in the constraint (16). Constraint (17) implies that the return orbital
slot for the active satellite in a P2P maneuver cannot be the orbital slot of a passive satellite
of a different P2P maneuver. To illustrate this, let us consider two triplets (i, j, k) ∈ M and
(p, q, r) ∈ M such that i �= p, j �= q, k �= r. Without loss of generality, assume Act(i, j, k) = i
and Act(p, q, r) = p. If r = j, then the fuel-sufficient satellite σ0(φp) initially occupying orbital
slot φp returns to the orbital slot φj . However, the orbital slot φj is not vacant because the
satellite σ0(φj) is passive and never leaves its slot. Constraint (17) avoids such infeasible cases.
A set of triplets M ⊆ T satisfying (12), (14)-(17) will be referred to as a basic feasible solution
for our problem.

It should be mentioned at this point that a few differences emerge between our problem
and the standard three-index assignment problem (AP3) discussed in Refs. 9–12,14,15. First,
the AP3 is a matching problem in a complete tripartite graph, whose partitions have the same
number of nodes. In the case of the constellation graph G or the reduced constellation graph Gr,
the three partitions do not have the same number of nodes. Secondly, in our problem, we have
additional constraints given in (17), which need to be accounted for whenever a basic feasible
solution is considered. Nonetheless, in our problem we can readily construct one basic feasible
solution without solving a three-index assignment problem. This solution is obtained by solving
the P2P refueling problem, while constraining the active satellites to return to their orbital
slots after refueling. This problem can be solved as a two-index assignment problem.3,5, 7

GREEDY RANDOM ADAPTIVE SEARCH PROCEDURE

In this section, we use a Greedy Random Adaptive Search Procedure to solve the three-index
assignment problem, while taking into account the additional constraints in (17). The GRASP
has been used to solve the standard AP3, and primarily consists of two phases: a construction
phase that builds a basic feasible solution, and a local search phase that locates a solution in
the neighborhood of the basic feasible solution with a lower cost. Reference 14 discusses two
variants of implementing the construction phase (randomized greedy, maximum regret) as well
as two variants of implementing the local search phase (two-exchange neighborhood search,
variable depth exchange). We will use the randomized greedy method in the construction
phase in order to generate a basic feasible solution, and we will perform a local search using a
two-exchange neighborhood.

7



Construction of a Basic Feasible Solution

The construction phase iteratively builds a feasible solution M by selecting |Id,0| triplets, one
at a time, from a list L of eligible triplets from T . The list L initially consists of all triplets in
the reduced constellation graph Gr, that is, L = T , because initially all triplets are eligible for
selection during the construction of M.

Let M� denote the constructed solution after the �th iteration, where � ≤ |Id,0|. Initially
M0 = ∅. Assume p − 1 < |Id,0| triplets have been added after p − 1 iterations, so the current
constructed solution is denoted by Mp−1 = {(i�, j�, k�) : � = 1, 2, . . . , p − 1}. The pth triplet
needs to be added to Mp−1.

A parameter η, known as restricted candidate list parameter, is selected at random from
the interval [0, 1] and is used to form a list Lr called the restricted candidate list that comprises
of the best (in terms of lower cost) candidate triplets available for selection during the current
iteration step. The restricted candidate list Lr ⊆ L is defined as

Lr = {(i, j, k) ∈ L : c (i, j, k) ≤ c + η(c̄ − c)}, (18)

where c and c̄ are given by

c = min
(i,j,k)∈L

c (i, j, k) and c̄ = max
(i,j,k)∈L

c (i, j, k) . (19)

The definition of the restricted candidate list given in (18) shows the greedy nature of the
algorithm. Only triplets in L having cost less than c + η (c̄ − c) are made eligible for selection.
At the pth step the triplet (ip, jp, kp) is chosen at random from Lr, provided it does not violate
(17), that is,

kp �= Pas(i�, j�, k�) for all � = 1, 2, . . . , p − 1, (20)

and
k� �= Pas(ip, jp, kp) for all � = 1, 2, . . . , p − 1. (21)

Equation (20) implies that the return orbital slot corresponding to the triplet (ip, jp, kp)
cannot be the orbital slot of a passive satellite corresponding to any of the triplets in Mp−1,
and equation (21) implies that the orbital slot of the passive satellite corresponding to the
triplet (ip, jp, kp) cannot be the returning orbital slot corresponding to any of the triplets in
Mp−1. Once the pth triplet is selected, the set of candidate triplets L must be adjusted to
take into account that (ip, jp, kp) is now part of the solution. Therefore, any triplet (i, j, k) ∈ L
with i = ip or j = jp or k = kp is removed from L because any such triplet cannot be selected
in the future; otherwise at least one of the constraints (14), (15), or (16) will be violated.
Subsequently, the list L is updated accordingly. Finally, Mp = Mp−1 ∪ (ip, jp, kp).

The adaptive nature of the GRASP method is due to the fact that once a triplet from Lr

is selected for addition to Mp−1, all triplets that are made ineligible for addition to Mp+1

are removed from L. The probabilistic nature of the algorithm arises from the use of the
random parameter η and the random selection of a triplet from the restricted candidate list.
In the most simple implementation of the algorithm the value of η is not changed during the
construction phase.
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Local Search

In the local search phase, the feasible solution from the construction phase is improved upon
by searching its neighborhood for a better solution. If an improvement is detected, the solution
is updated and a new neighborhood search is initialized. The definition of the neighborhood
N (M) of M is crucial for the performance of the local search. Here we use the 2-exchange
neighborhood suggested in Ref 15. Recall that the basic feasible solution generated by the
construction phase consists of |Id,0| triplets. For convenience, let us denote the triplet (i�, j�, k�)
by t�. Let also D = {1, 2, . . . , |Id,0|} denote the index set of triplets in M. We can therefore
write M = {t� : � ∈ D}. We will denote the difference between tp, tq ∈ M by

δ(tp, tq) = {r : tp,r �= tq,r, r = 1, 2, 3}. (22)

The distance between the triplets tp and tq is then defined as

d(tp, tq) = |δ(tp, tq)|. (23)

Using (23), we can define the 2-exchange neighborhood of the triplet pair (tp, tq) ∈ M×M as

N2(tp, tq) = {(τ, σ) ∈ M×M : d(tp, τ) + d(tq, σ) = 2}. (24)

The neighborhood of the solution M consists of the union of 2-exchange neighborhoods of all
possible triplet pairs (tp, tq) ∈ M, that is,

N (M) =
⋃

(tp,tq)∈M
N2(tp, tq). (25)

During the local search phase the cost of each M′ ∈ N (M) (validated with respect to the
constraints as in (17)) is compared with the cost of M. If the cost is lower, then the current
search is halted, and a search around the neighborhood of M′ is initialized. The local search
ends when no neighbor of the current solution has a lower cost.

The successive application of the construction phase and the local search phase may gener-
ate several local minima. The procedure halts either after the maximum number of iterations
is reached, or if a local minimum with a value less than or equal to some pre-specified value is
found.

Path Relinking

Path relinking is used to improve the quality of the solution generated by the construction and
local search phases. Path relinking consists of exploring a trajectory that connects two local
minima. Let us consider one of the two local minima as the initial solution and the other one
as the guiding solution. A path is generated by selecting steps that introduce in the initial
solution attributes of the guiding solution. Each step in the generation of the trajectory is
said to be a move. Let M1 and M2 be two local minima generated by the previous phases of
the GRASP procedure. Let M1 = {t� : � ∈ D} be the initial solution and M2 = {g� : � ∈ D}
be the guiding solution. Without loss of generality, we may assume t�,2 = g�,2 for all � ∈ D
because orbital slots of all fuel-deficient satellites need to be in any basic feasible solution. The
symmetric difference between M1 and M2 is given by the following expressions

∆1 = {� ∈ D : t�,1 �= g�,1, t� ∈ M1, g� ∈ M2}, (26)

9



∆3 = {� ∈ D : t�,3 �= g�,3, t� ∈ M1, g� ∈ M2}. (27)

An intermediate solution on the path from M1 to M2 can be generated by making two kinds
of moves. The sets ∆1 and ∆3 are used to guide such moves. Let M = {h� : � ∈ D} be an
intermediate solution such that t�,2 = h�,2 for all � ∈ D. Initially, M = M1. Let r ∈ ∆1. Also,
let hq,1 = gr,1 for some q ∈ D. Then, in one kind of move, triplets hr and hq are replaced by
(hq,1, hr,2, hr,3) and (hr,1, hq,2, hq,3) respectively in M. The new solution generated is

M′ = M∪ {(hq,1, hr,2, hr,3), (hr,1, hq,2, hq,3)}\{hr, hq}. (28)

Once such a move is made, r is removed from ∆1. Similarly, let r ∈ ∆3 and hq,3 = gr,3 for
some q ∈ D. In the other kind of move, triplets hr and hq are replaced by (hr,1, hr,2, hq,3) and
(hq,1, hq,2, hr,3) respectively in M. The new solution generated is

M′′ = M∪ {(hr,1, hr,2, hq,3), (hq,1, hq,2, hr,3)}\{hr, hq}. (29)

Once such a move is made, r is removed from ∆3. Provided a move generates a basic feasible
solution (validated with respect to constraints as in (17)), the cost of the solution M′ or M′′

is compared to M1 and M2. If the cost of either M′ or M′′ is found to be lower than M,
then a local search is performed in its neighborhood to yield a better solution.

NUMERICAL RESULTS

In this section, we apply the GRASP method with path relinking in order to determine the
optimal assignments required for P2P refueling of sample constellations when the active satel-
lites are not restricted to return to their original orbital slots. We also compare the results
against the baseline P2P cases, namely when the active satellites are constrained to return to
their original orbital slots. With the help of numerical examples, we show how the removal
of such a restriction leads to considerable reduction in the fuel expenditure required for the
refueling process to be completed. In all examples, we run the GRASP procedure 10, 000 times
in order to determine the optimal assignments.

Example 1.

We consider a circular constellation of 10 satellites evenly distributed in a circular orbit.
The maximum allowed time for refueling is T = 12 orbital periods. The constellation details
are given in Table 1. Each satellite si has a minimum fuel requirement of f

i
= 12 units,

permanent structure of msi = 70, and a characteristic constant of c0i = 2943 m/s. The indices
of the fuel-sufficient satellites are Is,0 = {1, 2, 8, 9, 10} and those of the fuel-deficient satelites
are Id,0 = {3, 4, 5, 6, 7}. For the baseline P2P refueling strategy, the optimal pairings are
s4 → s1, s5 → s2, s7 → s8, s6 → s9, s3 → s10, and the total fuel consumption for all P2P
maneuvers is 26.07 units. This represents 14.48% of the total initial fuel in the constellation.
The indices of the active satellites in this case are Ia = {3, 4, 5, 6, 7}. Note that Ia = Id,0, that
is, the fuel-deficient satellites are the active ones for the baseline P2P refueling strategy. A
fuel-deficient satellite has smaller mass compared to a fuel-sufficient satellite and thus uses a
smaller amount of fuel during an orbital transfer. Hence, during a refueling maneuver between
a fuel-sufficient and a fuel-deficient satellite, the fuel-deficient satellite is more likely to be the
active satellite.
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Table 1: Constellation C1.
i Satellites Orbital Position (deg) Initial fuel content
1 s1 φ1 = 0 f−

1 = 30
2 s2 φ2 = 36 f−

2 = 30
3 s3 φ3 = 72 f−

3 = 6
4 s4 φ4 = 108 f−

4 = 6
5 s5 φ5 = 144 f−

5 = 6
6 s6 φ6 = 180 f−

6 = 6
7 s7 φ7 = 216 f−

7 = 6
8 s8 φ8 = 252 f−

8 = 30
9 s9 φ9 = 288 f−

9 = 30
10 s10 φ10 = 324 f−

10 = 30

For the case in which the active satellites are allowed to interchange their orbital slots, the
optimal assignment for P2P refueling, determined from GRASP, is s8 → s7 → s6, s6 → s9 →
s8, s3 → s10 → s1, s1 → s4 → s5, s5 → s2 → s3. The fuel expenditure during the refueling
process is 18.73 units, which is less than the fuel expenditure for the baseline P2P case. This
represents 10.41% of the total initial fuel in the constellation, or an improvement of 28% over
the standard P2P scenario. Figure 1 shows the constellation and the optimal assignments.
The active satellites are marked by ’	’.

S2

S8

S7

S5

S4

S1

S3

S6

S9

S10

Figure 1: Constellation for Example 1.

The forward trips are marked by solid arrows, while the return trips are marked by dotted
arrows. In the optimal assignment produced by the GRASP method, it is observed that each
active satellite, after undergoing a fuel transaction with the corresponding passive satellite,
returns to an available orbital slot in the vicinity of the passive satellite with which it was
involved in the transaction. For instance, satellite s1 undergoes a fuel transaction with the
satellite s4 and then returns to the orbital slot initially occupied by active satellite s5. Moving
to an orbital slot in the vicinity involves an orbital transfer through a smaller transfer angle
and thereby results in a likely lesser fuel expenditure during the return trip. Hence, the active
satellites, having the freedom to return to any available orbital slot, opt to move to a nearby
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(a) Cost = 24.87 (b) Cost = 24.77

(c) Cost = 22.61 (d) Cost = 20.48
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Figure 2: Assignments obtained during local searches of the GRASP method.

one during the return trip. In the baseline P2P strategy, such freedom is not available, and
some of the active satellites have to perform orbital transfers that incur higher cost. Another
observation is the fact that some of the active satellites are also fuel-sufficient. Note that
satellites s1 and s8 are fuel-sufficient and active. For this problem, by having some fuel-
sufficient satellites as the active satellites, it is ensured that all active satellites are able to
return to the nearest orbital slot, thereby saving fuel during the return trip.

Figure 2 depicts a basic feasible solution generated by the GRASP method along with
a local search performed about this solution. Figure 2(a) is the basic feasible solution and
corresponds to the assignment s4 → s10 → s1, s1 → s3 → s4, s7 → s8 → s2, s2 → s5 → s7,
s6 → s9 → s6. The cost of this assignment is 24.87 units of fuel. By performing a search in
the neighborhood of this solution, another assignment of lower cost, shown in Figure 2(b) is
obtained. In this assignment, satellite s4 returns to the orbital slot initially occupied by s2

instead of the orbital slot initially occupied by s1, while satellite s7 returns to the orbital slot
initially occupied by s1 instead of returning to the orbital slot initially occupied by s2. The
cost of this assignment is 24.77 units of fuel. A local search performed in the neighborhood
of this solution yields the assignment shown in Figure 2 (c). In this assignment, satellite s7

rendezvous with s9 instead of s8, while satellite s6 rendezvous with s8 instead of s9. The cost
of this assignment is 22.61 units of fuel. A search in the neighborhood of this solution now
yields yet another assignment shown in Figure 2(d). In this assignment, satellite s2 returns to
the orbital slot initially occupied by s6 instead of the orbital slot initially occupied by s7, while
satellite s6 returns to the orbital slot initially occupied by s7 instead of returning to its original
orbital slot. The cost of this solution is 20.48. Finally, a local search in the neighborhood of this
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Table 2: Constellation C2.
i Satellites Orbital Position Initial fuel content
1 s1 φ1 = 0 f−

1 = 30
2 s2 φ2 = 22.5 f−

2 = 30
3 s3 φ3 = 45 f−

3 = 30
4 s4 φ4 = 67.5 f−

4 = 30
5 s5 φ5 = 90 f−

5 = 30
6 s6 φ6 = 112.5 f−

6 = 30
7 s7 φ7 = 135 f−

7 = 10
8 s8 φ8 = 157.5 f−

8 = 10
9 s9 φ9 = 180 f−

9 = 10
10 s10 φ10 = 202.5 f−

10 = 10
11 s11 φ11 = 225 f−

11 = 10
12 s12 φ12 = 247.5 f−

12 = 10
13 s13 φ13 = 270 f−

13 = 10
14 s14 φ14 = 292.5 f−

14 = 10
15 s15 φ15 = 315 f−

15 = 30
16 s16 φ16 = 337.5 f−

16 = 30

solution yields no other cheaper solution, thereby implying that the assignment in Figure 2(d)
is a local minimum.

Example 2.

In this example we consider a circular constellation of 16 satellites, evenly distributed in
a circular orbit. The maximum allowable time for refueling is T = 30 orbital periods. The
constellation details are given in Table 2. Each satellite si has a minimum fuel requirement
of f

i
= 15 units, permanent structure of msi = 70 units and a characteristic constant of

c0i = 2943 m/s. The indices of the fuel-sufficient satellites are Is,0 = {1, 2, 3, 4, 5, 6, 15, 16},
while those of the fuel-deficient satellites are Id,0 = {7, 8, 9, 10, 11, 12, 13, 14}. If the active
satellites are constrained to return to their original orbital slots after refueling, then the optimal
pairings are s11 → s1, s12 → s2, s9 → s3, s7 → s4, s8 → s5, s10 → s6, s13 → s15, s14 → s16, and
the total fuel consumption during the P2P maneuvers is 37.46 units. This represents 11.71% of
the total initial fuel in the constellation. For all the pairings in this case, only the fuel-deficient
satellites are the active ones, that is, Ia = {7, 8, 9, 10, 11, 12, 13, 14} = Id,0. This is similar to
the previous example.

If the active satellites are allowed to interchange orbital slots, then the optimal assignment
for the P2P refueling problem, as determined by the GRASP method, are s1 → s12 → s13,
s3 → s7 → s6, s5 → s8 → s9, s6 → s10 → s11, s9 → s4 → s5, s11 → s15 → s14, s13 → s16 → s1,
s14 → s2 → s3. Here, Ia = {1, 3, 5, 6, 9, 11, 13, 14}. Relaxing the return orbital position
constraint reduces the fuel expenditure to 24.82 units. This represents 7.76% of the total initial
fuel in the constellation or an improvement of 33% over the standard P2P scenario. Figure 3
shows the constellation and the optimal assignments. The active satellites are marked by ’	’.
Similar to Example 1, it is observed that the active satellites, after undergoing fuel transactions
with the corresponding passive satellites, return to an available orbital slot in their vicinity.
For instance, satellite s1 undergoes a fuel transaction with satellite s12 and returns to the
orbital slot occupied by active satellite s13. Also, the active satellites include fuel-sufficient
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Figure 3: Constellation for Example 2.

ones. Here s1, s3, s5 and s6 are fuel-sufficient and active.

We have also tested the proposed methodology on several sample constellations. Table 3
gives the description of a few of these sample constellations (C1 and C2 are the constellations
already described in Examples 1 and 2, respectively). The optimal assignments for these
constellations show considerable reduction in fuel consumption against the baseline P2P strat-
egy. For instance, for constellation C3 the baseline P2P refueling strategy yields the optimal
assignment s4 → s1, s5 → s2, s7 → s10, s6 → s3, s11 → s8, s9 → s12 with a fuel expenditure of
26.73 units, with the fuel-deficient satellites being the active ones. Our proposed methodology
yields the optimal assignment s9 → s12 → s11, s11 → s8 → s7, s4 → s1 → s2, s2 → s5 → s6,
s6 → s3 → s4, s7 → s10 → s9, that reduces the fuel expenditure to 18.51 units. Similarly, for

Fuel expenditure in P2P refueling
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Figure 4: Comparison of results for several sample constellations.
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the other constellations the fuel expenses reduce from 41.06 units to 26.26 units in case of C4,
from 28.38 to 18.51 in case of C5, from 28.77 units to 19.21 units in case with C6, and from
34.97 units to 22.57 units in the case of C7. Figure 4 summarizes these observations.

CONCLUSIONS

In this paper, we have studied the peer-to-peer satellite refueling problem under the assumption
that the active satellites are allowed to interchange orbital positions during their return trips.
The problem is formulated as a three-index assignment problem on a tripartite constellation
graph. The problem is shown to deviate from the standard three-index assignment problem
(AP3) studied in the literature owing to additional constraints imposed by the nature of the
problem. We have used a Greedy Random Adaptive Search Procedure (GRASP) in order
to find the optimal assignments. With the help of numerical examples, it is shown that our
proposed P2P refueling strategy, which allows active satellites to interchange orbital positions
during their return trips, results in considerable reduction in the fuel expenditure incurred
during the refueling process. It is also shown that each active satellite opts to return to an
available orbital slot in the vicinity of the passive satellite with which it is involved in a fuel
transaction.

Table 3: Sample Constellations.

Label Description
C3 12 satellites, Altitude = 2, 000 Km, T = 30

f−
i : 30, 30, 30, 10, 10, 10, 10, 10, 10, 30, 30, 30
f̄i = 30, f

i
= 15, msi = 70 for all satellites

C4 18 satellites, Altitude = 6, 000 Km, T = 25
f−

i : 25, 25, 25, 25, 25, 25, 25, 25, 25, 6, 6, 6, 6, 6, 6, 6, 6, 6
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C5 12 satellites, Altitude = 12, 000 Km, T = 20
f−

i : 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C6 14 satellites, Altitude = 1, 400 Km, T = 35
f−

i : 25, 25, 25, 25, 25, 25, 25, 8, 8, 8, 8, 8, 8, 8
f̄i = 25, f

i
= 12, msi = 75 for all satellites

C7 16 satellites, Altitude = 30, 000 Km, T = 15
f−

i : 10, 10, 10, 10, 10, 10, 10, 10, 28, 28, 28, 28, 28, 28, 28, 28
f̄i = 30, f

i
= 15, msi = 70 for all satellites
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