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AN EXPERIMENTAL VALIDATION OF SPACECRAFT

ATTITUDE AND POWER TRACKING WITH

VARIABLE SPEED CONTROL MOMENT GYROSCOPES

Dongwon Jung∗ and Panagiotis Tsiotras†

Georgia Institute of Technology, Atlanta, GA 30332-0150

Variable speed control moment gyros (VSCMGs) distinguish themselves
from the conventional CMGs by having extra degrees of freedom to control
the wheel spin in addition to the gimbal angles. Thus, they can be adopted
to achieve additional objectives, such as energy storage, as well as attitude
control. VSCMGs are ideal for integrated power and attitude control sys-
tems (IPACS). The gimbal rates of the VSCMGs can be used to provide
the attitude control torque, whereas the wheel accelerations can be used for
both attitude tracking and power tracking. Several control laws for simul-
taneous attitude and power tracking have been proposed in the literature.
In this paper we experimentally validate an IPACS control law proposed in
our previous work using a realistic 3-dof spacecraft simulator.

Introduction

Chemical batteries onboard a spacecraft store electrical energy converted from sunlight
at the solar panels during the period of exposure to the sun. When the spacecraft is in
the eclipse, electric power is supplied from the chemical batteries. This causes the batteries
to repeatedly charge and discharge twice over each orbit for a LEO. Since most chemical
batteries have a limited number of charge and discharge cycles, the life span of the spacecraft
is often decided by the life cycle of the chemical batteries. In addition, the use of chemical
batteries brings about other demerits such as increased launch costs due to the large weight
and sizing of the batteries, the extra care for designing a thermal protection system in
order to meet the strict temperature specifications of chemical batteries, and the additional
system mass for managing the charging and discharging cycles.

Rotating flywheels at high speed have been proposed as an alternative way of storing
energy in lieu of chemical batteries.1 These energy storage flywheels are also known as
“mechanical batteries,” and they have the advantage of increased energy efficiency as well
as the ability to operate at relatively high temperatures. In addition to the main attitude
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control function, flywheels also offer the possibility of combining both the energy storage
and attitude control functions into a single device, hence increasing reliability and reducing
the overall weight and size. This concept, known as the integrated power and attitude
control system (IPACS), has been studied since the 1960s.2,3 A complete survey on IPACS
is given in Refs. 4 and 5. More recently, flywheels have been proposed as a viable candidate
for replacing chemical batteries onboard the International Space Station (ISS).6 NASA
Glenn Research Center recently announced a flywheel energy storage system that achieved
continuous operation at 60,000 rpm supported on magnetic bearings.

Employing flywheels for attitude control and energy storage necessitates the develop-
ment of an appropriate algorithm to meet simultaneously the stringent attitude torque
and the power requirements. Tsiotras et al4 presented a control law for IPACS with en-
ergy/momentum wheels in an arbitrary non-coplanar configuration, whereas Roithmayr et
al7 developed an algorithm for the simultaneous control of both the orientation of a space-
craft and the energy stored in counter-rotating flywheels using control moment gyroscopes
(CMGs). Yoon and Tsiotras8 proposed control laws for IPACS using variable speed single
control moment gyroscopes (VSCMGs). Although the wheel spin rates of the conventional
CMGs are kept constant, the wheel spin rates of the VSCMGs are allowed to vary contin-
uously. The benefit of the extra degrees of freedom of the acceleration commands for the
spin wheels is apparent; the energy can be stored or dissipated using the wheels, while the
gimbals are commanded to generate the necessary torque for precise attitude control. In
Ref. 8 the authors developed both model-based and adaptive attitude and power tracking
control laws (the latter for spacecraft with uncertain inertia properties), including wheel
speed equalization. The numerical results of Ref. 8 showed the feasibility of employing
VSCMGs for IPACS. Nevertheless, as far as the authors know, IPACS algorithms of coor-
dinating the attitude and power tracking specifications in a seamless manner have not been
validated experimentally on realistic hardware allowing full 3-dof motion.

In this paper, the IPACS of Ref. 8 is validated on a realistic three-axis spacecraft sim-
ulator. In the rest of the paper, first a brief review of the adaptive control law, the power
tracking control law, and the wheel speed equalization module are summarized for the
reader’s convenience. A description of the experimental platform used to validate the con-
trol laws is given next. The platform is based on a realistic 3-dof spacecraft simulator
equipped with four VSCMGs. The results from the experiments are given next and are
compared against high fidelity numerical simulations.

Equations of Motion

Dynamics

The complete equations of motion for a rigid spacecraft with a cluster of N VSCMGs have
been developed in the literature8 and are repeated below for convenience(

At[γ̇]d(Ics − Ict)AT
s +As[γ̇]d(Ics − Ict)AT

t

)
ω

+Jω̇ +AgIcgγ̈ +AtIws[Ω]dγ̇ +AsIwsΩ̇ + [ω×]
(
Jω +AgIcgγ̇ +AsIwsΩ

)
= 0,

(1)

where, ω = (p, q, r)T ∈ R
3 is the spacecraft angular velocity vector, γ = (γ1, . . . , γN )T ∈ R

N

is the gimbal angle vector and Ω = (Ω1, . . . ,ΩN )T ∈ R
N is the vector of the wheel spin
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rates of the VSCMGs. All the vectors and matrices in Eq. (1) are expressed in a body-
fixed frame located at the center of rotation of the spacecraft platform. For any vector
x = (x1, x2, x3)T ∈ R

3, the notation [x×] denotes the skew-symmetric matrix

[x×] �

⎡
⎢⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎥⎦ ,

whereas, for a vector x ∈ R
N the notation [x]d ∈ R

N×N denotes the diagonal matrix with
its elements the components of the vector x, that is,

[x]d � diag(x1, · · · , xN ).

In Eq. (1) the matrix J is the moment of inertia matrix of the entire spacecraft, given
by

J � BI +AsIcsA
T
s +AtIctA

T
t +AgIcgA

T
g , (2)

where BI is the combined matrix of inertia of the spacecraft platform and the point masses of
the VSCMGs. The matrices Ic� and Iw� are diagonal, with elements the values of the inertias
of the gimbal plus wheel structure and wheel-only-structure of the VSCMGs, respectively.
The jth gimbal frame of reference has unit vectors given by êgj , êsj , êtj , (j = 1, . . . , N) along
the gimbal axis, the wheel spin axis, and the torque producing axis so that êtj = êgj × êsj ,
respectively. It is attached on each VSCMG and is located at the center of the gimbal/wheel
combination. The matrices A� with � = g, s or t then collect these unit vectors such that
A� � [e�1, · · · , e�N ].

Kinematics

The modified Rodrigues parameters (MRPs) given in Refs. 9–11 are used to describe the
orientation of the spacecraft. The MRPs are defined in terms of the Euler principal unit
vector η̂ and angle φ, as follows

σ = η̂ tan(φ/4). (3)

The differential equation that governs the attitude kinematics in terms of the MRPs is
given by

σ̇ = G(σ)ω, (4)

where,

G(σ) =
1
2

{
I3 + [σ×] + σσT − [1

2
(1 + σTσ)

]
I3

}
(5)

and I3 is the 3 × 3 identity matrix.

Attitude and Power Tracking with Wheel Speed

Equalization

In this section, a control law is presented for combined attitude and power tracking
using N VSCMGs. In addition, wheel speed equalization is applied for distributing the
power requirement amongst the N wheels in the VSCMG cluster so that it prevents some
wheels in the VSCMG cluster from possibly becoming impaired to generate torque properly
due to wheel saturation or singularies.
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Adaptive Attitude Tracking with VSCMGs

The mass properties of a spacecraft are often unknown a priori. This necessitates applying
an adaptive attitude control to deal with the uncertainty associated with the mass moment
of inertia. Furthermore, in the VSCMG case the spacecraft inertia matrix J also depends
on the gimbal angles γ, hence it is time-varying; see Eq. (2). Notice nonetheless that the
derivative of J is known. Consequently, an adaptive control law that uses estimates of the
elements of J is designed in Ref. 8 using arguments similar to standard adaptive control
design techniques. The steps of Ref. 8 are summarized below.

First notice that equation (1) can be rewritten as

1
2
J̇ω + Jω̇ + [ω×](Jω +AsIwsΩ) +Bγ̈ + C̃γ̇ +DΩ̇ = 0, (6)

where,
B = AgIcg, D = AsIws, (7a)

C̃ = AtIws[Ω]d+[ω×]AgIcg+
1
2

[(
es1e

T
t1+et1eTs1

)
ω, · · · , (esNeTtN +etNeTsN

)
ω
]
(Ics−Ict). (7b)

Typically, the gimbal acceleration term Bγ̈ can be ignored because the matrix B is small
compared to the matrices C̃ and D.12

Differentiating Eq. (4), one obtains

ω̇ = G−1(σ)σ̈ −G−1(σ)Ġ(σ, σ̇)ω. (8)

Substituting Eq. (8) and Eq. (4) into Eq. (6) one ends up with the equation of the system
written in the standard form:

H∗(σ)σ̈ + C∗(σ, σ̇)σ̇ = F (σ, σ̇, γ,Ω, γ̇, Ω̇) (9)

where,

H∗(σ) � G−T(σ)JG−1(σ),

C∗(σ, σ̇) � −G−T(σ)JG−1(σ)Ġ(σ, σ̇)G−1(σ) −G−T(σ)[(Jω)×]G−1(σ),

F � G−T(σ)[(AsIwsΩ)×]ω −G−T(σ)(C̃γ̇ +DΩ̇) − 1
2
G−T(σ)J̇ω.

(10)

Note that the left-hand-side of Eq. (9) is linear in terms of the elements of J , which are the
unknown parameters to be estimated. Let a ∈ R

6 be the parameter vector defined by

a �
(
J11, J12, J13, J22, J23, J33

)T
, (11)

and let â be an estimate of a. The following theorem presents an adaptive attitude tracking
control law. A detailed proof can be found in Ref. 8.

Theorem 1 (Ref. 8) Let s = ˙̃σ + λσ̃ = σ̇ − σ̇r (λ > 0) where σ̃ = σ − σd is the attitude
tracking error, σd is the reference attitude trajectory, and σ̇d is the derivative of the reference
trajectory and σ̇r = σ̇d −λσ̃ is the reference velocity vector. Consider the following attitude
control law

F = Ĥ∗(σ)σ̈r + Ĉ∗(σ, σ̇)σ̇r −KDs− 1
2
G−T(σ)J̇G−1(σ)s (12)
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where Ĥ∗(σ) = G−TĴG−1 and Ĉ∗(σ, σ̇) = −G−TĴG−1ĠG−1 −G−T
[
(Ĵω)×

]
G−1, KD > 0,

and the adaptation law
˙̂a = −ΓY ∗Ts+ ȧ (13)

where Γ > 0, and Y ∗(σ, σ̇, σ̇r, σ̈r) is a known matrix satisfying

Y ∗(σ, σ̇, σ̇r, σ̈r)ã � H̃∗(σ)σ̈r + C̃∗(σ, σ̇)σ̇r, (14)

where H̃∗(σ) = Ĥ∗(σ) − H∗(σ), C̃∗(σ, σ̇) = Ĉ∗(σ, σ̇) − C∗(σ, σ̇), and ã = â − a is the
parameter estimation error. Then the closed-loop system of Eqs. (9), (12), and (13) is
globally asymptotically stable, that is, s→ 0 and σ → σd.

From Eqs. (12) and (9) it follows that the required control inputs are obtained by solving

Qau = Lra, (15)

where,

Qa =
[
C D

]
,

Lra = −GT(σ)
[
Ĥ∗(σ)σ̈r + Ĉ∗σ̇r −KDs

]
+

[
(AsIwsΩ)×

]
ω,

and

C =AtIws[Ω]d + [ω×]AgIcg+
1
2

[(
es1e

T
t1 + et1e

T
s1

)
(ω +G−1σ̇r), · · · ,

(
esNe

T
tN + etNe

T
sN

)
(ω +G−1σ̇r)

]
(Ics − Ict).

(16)

Note that the control input calculated in Eq. (15) is u = [ γ̇ Ω̇ ]T. The gimbal motor and
the spin motor in practice require torque commands instead of the gimbal rate γ̇ or the wheel
spin acceleration Ω̇ commands. The control law in terms of [ γ̇ Ω̇ ]T has to be implemented
via internal feedback loops to generate the torque commands to the corresponding motors.

Power Tracking

The total kinetic energy stored in the momentum wheels is

T =
1
2
ΩTIwsΩ. (17)

Hence, the power (rate of change of the energy) is obtained by

P =
dT
dt

= ΩTIwsΩ̇ =
[
0 ΩTIws

] [
γ̇

Ω̇

]
. (18)

Equation (18) is augmented to the attitude tracking steering equation (15) to obtain
the augmented steering equation for the IPACS with the VSCMGs,

Qpu = Lrp (19)

where,

Qp =

[
C D

01×N

(
ΩTIws

)
1×N

]
, Lrp =

[
Lra

P

]
, (20)

and P is the desired power profile derived from the mission specifications.
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Wheel Speed Equalization

If some of the wheel speeds become too small (or zero) the required torque for attitude
control cannot be produced, regardless of the gimbal rate commands. If this is the case,
the remaining degrees of freedom of the VSCMG cluster may not be enough to allow exact
attitude and power tracking. On the other hand, if some of the wheel speeds become too
high, those wheels might saturate so that the VSCMG cluster loses the capability to track
an arbitrary power profile. Desaturation of the wheels is possible by thruster firing, yet
depleting valuable fuel. In order to minimize the possibility of singularity and/or wheel
saturation, it is desirable to equalize the wheel speeds of the VSCMGs, whenever possible.
Two methods are proposed in Ref. 8, which are briefly outlined below. The first method
achieves exact wheel speed equalization for all times (hard constraint), whereas the second
method achieves wheel speed equalization only when the wheel speed equalization does not
interfere with the singularity avoidance task (soft constraint).

The first method in Ref. 8 adds an extra constraint that forces the wheel speeds to
converge to the average wheel speed of the cluster. To this end, let the performance measure

Jw1(Ω1, · · · ,ΩN ) =
1
2

N∑
i=1

(Ωi − Ω̄)2 =
1
2
ΩT

e Ωe, (21)

where,

Ω̄ =
1
N

N∑
i=1

Ωi, Ωe = Ω − Ω̄1N×1, (22)

and 1N×1 is N×1 vector whose elements are 1s. The condition for equalization is expressed
as the requirement that the rate of change of the performance measure Jw1 forms a stable
dynamic system with a certain time constant. That is,

d
dt

Jw1 = ∇Jw1Ω̇ =
N∑

i=1

∂Jw1

∂Ωi
Ωi = −k2Jw1 (23)

where, k2 > 0. This condition is then augmented to Eq. (19), and the control input u
is obtained by solving the resulting linear system. In other words, the control law that
achieves attitude and power tracking with wheel speed equalization is given by

Qwu = Lrw, (24)

where,

Qw =

⎡
⎢⎣

C D

01×N

(
ΩTIws

)
1×N

01×N

(∇Jw1

)
1×N

⎤
⎥⎦ , Lrw =

⎡
⎢⎣ Lra

P

−k2Jw1

⎤
⎥⎦ . (25)

Using the fact that Ωe = [IN −(1/N)1N×N ]Ω, where 1N×N is N×N matrix whose elements
are 1s and the matrix [IN −(1/N)1N×N ] is idempotent, it can be easily shown that ∇Jw1 =
ΩT

e .
The second wheel speed equalization algorithm seeks to minimize the following cost

Jw2 =
1
2
uTW−1u + Ru, (26)
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where the weighting matrix R is chosen so as to penalize any wheels rotating faster or
slower than the average wheel speed, as follows

R = [ 01×N k3ΩT
e ], k3 > 0. (27)

The solution minimizing the cost in Eq. (26) is found as

u = W
[
QT

p

(
QpWQT

p

)−1(Lrp + QpWRT
) − RT

]
. (28)

In case Qp is not full rank, the following equation can be used instead

u = W
1
2
(
QpW

1
2
)†(Lrp + QpWRT

) − WRT

= W
1
2
(
QpW

1
2
)†Lrp −

[
IN − W

1
2
(
QpW

1
2
)†Qp

]
WRT.

(29)

It is worth mentioning that neither of the previous two wheel equalization algorithms
conflicts with the attitude and power tracking control objectives.

Solving the VSCMG Steering Equation

The matrices Q� in Eqs. (15), (19), (24) have dimensions 4 × 2N , 5 × 2N , and 6 × 2N ,
respectively. Whenever Q� has maximal rank (and N ≥ 4), those equations have infinitely
many solutions. The minimum-norm solution calculated from

u = Q†Lr� = QT
� (Q�QT

� )−1Lr�, � = a,w,p (30)

where (·)† represents the pseudo inverse, and which minimizes

min
u

‖u‖2 subject to Q�u = Lr�, (31)

is known as the Moore-Penrose (MP) solution.13 On the other hand, if the C matrix in
Eqs. (15), (19), (24) is rank deficient so is the matrix Q�. Consequently, no exact solution
that satisfies Eq. (31) exists, unless Lr� is in the range space of Q�. The matrix Q�QT

� is
not invertible and the steering law Eq. (30) fails to achieve simultaneous attitude and power
tracking control except for very special cases.4

Although the rank deficiency of the C matrix can be alleviated using more VSCMGs,
the possibility of the singularity still remains. Moreover, the MP solution tends to steer the
gimbals towards the rank deficient configurations.13,14 Several methods have been proposed
to keep the matrix C full rank,15–17 and compared experimentally on a 3-dof spacecraft
simulator.18

It is advantageous for the VSCMGs to act as conventional CMGs to produce the most
torque from the torque amplification effect, which is a significant merit of the CMGs. If the
VSCMG cluster approaches towards a singularity, however, it is favorable for the VSCMGs
to act as momentum wheels (MWs) to avoid singularities. A weighted minimum-norm
solution, which minimizes the weighted cost

J2 =
1
2
uTW−1u (32)
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can be used to switch the VSCMGs between CMG and MW modes.12,16 Defining the
weighting matrix W as follows

W =

[
w1e

−w2σcIN 0N

0N IN

]
, (33)

where, IN is the N ×N identity matrix and σc is the condition number of C (the ratio of
the largest to the smallest singular value) and w1 and w2 are positive gains chosen by the
user, the weighted minimum-norm solution is obtained by

u = WQT
� (Q�WQT

� )−1Lr�. (34)

In case Q� is not full row rank, the approximate solution can be obtained from

u = W
1
2 (Q�W

1
2 )†Lr�. (35)

From the solution Eq. (34) with the weighting matrix W, it can be ascertained that the
VSCMGs can operate either in MW mode (‖Ω̇‖ < ‖γ̇‖, when σc is small) or in regular
CMG mode (‖Ω̇‖ > ‖γ̇‖, when σc is large) depending on the singularity measure σc. As
a singularity is approached, the VSCMGs will smoothly switch to MW mode to avoid the
singularity. The VSCMGs will switch back to the CMG mode whenever they are far away
from any singularities. Thus, the weighted minimum-norm solution can manage temporary
rank deficiencies of the matrix C.

Description of Experimental Facility

The Georgia Tech 3-dof Spacecraft Platform

The experimental facility which was used to implement the attitude and power tracking
control law of the previous section is based on a three-axial air bearing, located at the
Dynamics and Control Systems Laboratory of the School of Aerospace Engineering at the
Georgia Institute of Technology, shown in Fig. 1. The facility provides three rotational
degrees of freedom as follows: ±30 deg about x and y axes (horizontal) and 360 deg about
the z axis (vertical). It was designed to support advanced research in the area of nonlinear
spacecraft attitude dynamics and control.

The spacecraft platform is made of a cylindrical aluminum structure, and it is equipped
with a variety of actuators and sensors: a set of cold-gas thrusters, four variable-speed
control moment gyros, a two-axis sun sensor, a three-axis magnetometer, a three-axis rate
gyro, and an inertial measurement unit (IMU). An onboard computer and wireless eth-
ernet connection with the host computer allow high-speed communication and real-time
implementation of control algorithms.

VSCMG Actuators

For the experiments presented in this paper the VSCMG actuators were employed to provide
the necessary torque on the spacecraft, while imitating the behavior of mechanical batteries
through spinning up and spinning down of the wheels. There are four VSCMG modules on
the spacecraft platform, mounted in a pyramid configuration with a skew angle of 54.7 deg.
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Figure 1. The Georgia Tech three-axial spacecraft simulator.

One of the VSCMG modules is shown in Fig. 2. Each VSCMG module has two brushless
DC motors. One of the motors controls the gimbal, while the other controls the spin wheel.
A potentiometer measures the rotation angle of the gimbal. The gimbal rate signal is also
available to the user via a separate I/O channel. The gimbal motor operates in gimbal
rate mode via an internal PID servo loop torquing the gimbal according to a gimbal rate
command. The gimbal is allowed to rotate within ±100 deg and the maximum achievable
gimbal rate is limited to ±25 deg/sec. The spin wheel motor is coupled directly (no gearbox)
to a momentum wheel, and it operates according to a torque command. The maximum
torque output of the wheel motor is 310 mNm, and it saturates at a maximum speed of
4000 rpm. In CMG mode, the wheel motor operates at a constant speed via an internal
PID servo loop according to a specified angular momentum magnitude. An incremental
digital encoder with resolution of 500 pulses per revolution is coupled to the spin axis to
capture the angular position of the wheel. The spin rate is made available to the user by
differentiating the angular displacement at a sampling rate of 100 Hz. In torque mode the
wheel acceleration can be controlled via an additional PID loop from the measurement of
the spin rate.

The maximum acceleration/deceleration of the wheel is 73 rad/sec2 with a moment of
inertia of the wheel Iws = 0.0042 kg-m2. Hence, the maximum power that can be ideally
extracted from a spinning wheel is

Pmax = ΩmaxIwsΩ̇max

= 419 × 0.0042 × 73 = 128 Watt,
(36)

where Pmax is the instantaneous power delivered from the spinning wheel to the system.
The detailed physical data of each VSCMG are listed in Table 1.
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Figure 2. Main components of the VSCMG module.

Communication, Computer and Electronics

An industrial embedded computer (ADLink NuPRO-775 Series) is used for data acqui-
sition, data recording, and control law implementation via the MATLAB xPC Target
Environment� with Embedded Option.19 The main CPU is based on the Intel Pentium� III
750MHz processor with on-board memory 128MB DRAM and 128MB disk-on-chip, allow-
ing the user for real-time data acquisition, processing, and data recording. The connection
to a host computer is achieved in the xPC Target Environment via a wireless ethernet LAN
connection. A wireless LAN router (DLink DI-713P) and a USB adapter (DLink DWL-120)
allow to transfer data at speeds up to 11 Mbps.

The target computer system has three data acquisition interface cards. Two analog input
cards (PCI-6023E from National Instruments) are used to measure the analog voltages from
the rate gyro, magnetometer, sun sensor, and so on. Another analog output card (PCI-6703
from National Instruments) is used to control the VSCMGs.

A detailed description of the design and construction of this experimental spacecraft
simulator facility, including specifications for all sensors and actuators can be found in
Ref. 20.

Experimental Results

In this section we present the results from the experimental validation of the adaptive
attitude and power tracking control law presented earlier and we compare the results against
numerical simulation using a high fidelity model. A power profile similar to that given in
Ref. 8 was chosen as a reference to track. The power profile is scaled down so that the
peak power is 15 Watt. For implementation purposes we need to take into account the
angle limits of the air bearing in roll and pitch, so we have chosen the reference attitude
trajectory in terms of Eulerian angle as follows

[ φd(t) θd(t) ψd(t) ] = [ π/36 sin(πt/25) 0 π/6 sin(πt/50) ] rad.
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Table 1. VSCMG Physical Data.

Item Value Units
Iws diag[0.0042, 0.0042, 0.0042, 0.0042] kg-m2

Ics diag[0.0146, 0.0146, 0.0146, 0.0146] kg-m2

Icg diag[0.0082, 0.0082, 0.0082, 0.0082] kg-m2

Ict diag[0.0121, 0.0121, 0.0121, 0.0121] kg-m2

Pyramid skew angle 54.7 deg
Maximum wheel speed 4000 rpm

Peak torque of the spin motor 310 mNm
Gimbal angle range ±100 deg
Gimbal rate limit ±25 deg/sec

Since the MRPs are utilized in the adaptive tracking control law, we need to transform this
representation to the MRPs according to the transformation given in Ref. 9.

Simulation studies were first conducted to validate the IPACS algorithm by taking the
actual hardware constraints into consideration. A high fidelity Simulink� model of the en-
tire spacecraft dynamics including details of all subsystems was utilized to find appropriate
gains for the IPACS control algorithm. After several trials the control gains were finally
chosen as follows

KD = 3 × 102 · I3, Γ = 1 × 104 · I6, λ = 0.1,
k2 = k3 = 0.3, w1 = 0.01, w2 = 0.01.

For the initial setup for the experiments the wheels were spun up to

Ω(t0) = [2, 2.2, 2.8, 3]T × 103 rpm

and the initial gimbal angles were set to zero. This was done in order to enable the VSCMGs
to produce the required control torque magnitude and also to test the wheel speed equaliza-
tion algorithm. In addition, the spacecraft platform was initially at rest in a configuration
close (but not equal) to the reference trajectory.

Three sets of experiments were conducted. In the first experiment, no wheel speed
equalization algorithm was used. The objective was only to track the reference attitude and
power profiles. In the second set of experiments the first wheel speed equalization algorithm
of the previous section was implemented, while in the third set the second wheel speed
equalization algorithm was implemented. For all cases, the results from the experiments
were compared with numerical predictions.

Figures 3-8 show the results from the first set of experiments. Specifically, Figure 3
shows the actual attitude histories compared with the reference attitude histories. The
spacecraft succeeds in following the reference attitude over the entire period of the ma-
neuver. Figure 4 shows the attitude error in terms of the Eulerian angles. The maximum
angle error is approximately 1 deg. This small discrepancy from the reference is attributed
to the neglected constant gravity torque arising from the misalignment between the center
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of mass of the platform and its center of rotation. This torque deteriorates the tracking
performance affecting mainly the pitch and roll axes as is clearly evident in Figure 4. This
error can be reduced or eliminated by either an additional integral action in the control
loop or explicit cancelation of the gravity torque by the controller (see Ref. 18). Figure 5
shows the actual versus the commanded power profile. The two agree very well, confirming
the successful operation of coordinated attitude and power tracking. The corresponding
wheel speeds are shown in Figure 6. The wheels spin-up to store energy (positive power)
and despin to discharge energy (negative power). In all the previous figures also note the
very close correlation between the experimental results and the numerical simulations. The
gimbal angles, the control commands (gimbal rate γ̇ and wheel acceleration Ω̇) are shown in
Figure 7. The results from the numerical simulation for the gimbal angles, the gimbal rates
and the wheel accelerations are shown in Figure 8. Comparison of Figures 7(a) and 8(a)
shows some discrepancy between the predicted and the actual gimbal angle history. This
can be attributed to the somewhat different (albeit small) actual commanded angular rate
during the experiments due to the gravity torque. Since the gimbal angles are somewhat dif-
ferent, the condition number of the matrix C during the experiment (shown in Figure 7(d))
also differs from the condition number predicted from the numerical simulations (shown in
Figure 8(d)). In both cases, however, the results are very similar and certainly within the
same order of magnitude. The condition number remains bounded, which implies that no
singularity has been encountered during the maneuver.
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(a) Euler angles
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(b) MRPs

Figure 3. Experimental and simulated results for attitude history without wheel speed equal-
ization.

The results from the second set of experiments are shown in Figures 9-14. Specifically,
Figure 9 shows the actual attitude histories compared with the reference attitude trajecto-
ries, whereas Figure 10 shows the attitude error in terms of the Eulerian angles. Figure 11
shows the actual power profile versus the required power reference along with the simulated
power trajectory. All agree extremely well. Most interesting for this set of experiments is
perhaps Figure 12, which shows the wheel speed histories. With the wheel speed equaliza-
tion algorithm engaged, the wheel speeds tend to the same value after an initial transient.
This has been achieved without any deterioration in the attitude and power tracking per-
formance. Finally, the gimbal angles, the control commands, and the condition number
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Figure 4. Experimental and simulated results for attitude tracking error without wheel speed
equalization.

of the matrix C are shown in Figure 13. They all agree very well with the time histories
predicted from numerical simulations (Figure 14).

The results from the third set of experiments are almost identical to those of the previous
case, therefore we only show the plot from the time history of the wheel speeds. This is
shown in Figure 15. The wheel speed equalization algorithm works as expected.

Conclusions

In this paper we present results from the experimental validation of a control algorithm
for simultaneous attitude and power tracking using a cluster of VSCMGs. A weighted
minimum-norm solution for the steering logic is used, in conjunction with two wheel speed
equalization algorithms. The experimental results correlate very well with numerical sim-
ulations. The small discrepancies observed in the attitude tracking error are due to the
misalignment of the center of rotation of the platform and its center of mass and can be
taken care of by integral action and/or by adaptive cancelation of this constant term, thus
achieving even more precise attitude tracking. This is the first time where 3-axis attitude
tracking with simultaneous power management has been demonstrated experimentally, as
far as the authors know.
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Figure 6. Wheel speed history without wheel speed equalization.
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Figure 7. History of gimbal angles, control inputs, and condition number of matrix C without
wheel speed equalization [Experiment].
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(b) Gimbal rate control input

0 20 40 60 80 100 120 140 160 180
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [sec]

Wheel acceleration control input (Simulation)

 

 

Ω̇
[r
ad

/s
ec

2
]

Ω̇1
Ω̇2
Ω̇3
Ω̇4

(c) Wheel acceleration control input
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Figure 8. History of gimbal angles, control inputs, and condition number of matrix C without
wheel speed equalization [Simulation].
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(a) Euler angles

0 20 40 60 80 100 120 140 160 180
−0.1

−0.05

0

0.05

0.1

Time [sec]

σ 1

 

 
Experiment
Simulation
Reference

0 20 40 60 80 100 120 140 160 180
−0.1

−0.05

0

0.05

0.1

Time [sec]

σ 2

 

 
Experiment
Simulation
Reference

0 20 40 60 80 100 120 140 160 180
−0.2

−0.1

0

0.1

0.2

Time [sec]

σ 3

 

 
Experiment
Simulation
Reference

(b) MRPs

Figure 9. Experimental and simulated results for attitude with first wheel speed equalization
algorithm.
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Figure 10. Experimental and simulated results for attitude tracking error with first wheel
speed equalization algorithm.
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Figure 11. Experimental and simulated results for power profile with first wheel speed equal-
ization algorithm.
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(b) Simulation

Figure 12. Wheel speed history with first wheel speed equalization algorithm engaged.
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(b) Gimbal rate control input
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(c) Wheel acceleration control input
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Figure 13. History of gimbal angles, control inputs, and condition number of matrix C with
first wheel speed equalization algorithm [Experiment].
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(b) Gimbal rate control input
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(c) Wheel acceleration control input
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Figure 14. History of gimbal angles, control inputs, and condition number of matrix C with
first wheel speed equalization algorithm [Simulation].
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Figure 15. Wheel speed history with second wheel speed equalization algorithm engaged.
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