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A Variable Speed Control Moment Gyro (VSCMG) is a relatively recent torque actuator
device for spacecraft attitude control. As implied by its name, a VSCMG is a single-
gimbal control moment gyro (CMG) with a flywheel having variable speed. Owing to this
extra degree of freedom, a VSCMG can be used to achieve additional objectives, such as
power tracking and/or singularity avoidance, as well as attitude control. In this article, a
singularity analysis and a singularity avoidance method are proposed for the case when a
VSCMG cluster is used as part of an integrated power/attitude control system (IPACS)
onboard a satellite. The gimbal rates of the VSCMGs are used to provide the reference-
tracking torques, while the wheel accelerations are used both for attitude tracking and
power reference tracking. The latter is achieved by storing or releasing the kinetic energy
stored in the VSCMG flywheels. A null motion method to avoid singularities is also
presented and a criterion is developed to determine the momentum region over which
this method will successfully avoid singularities. This criterion can be used to size the
wheels and develop appropriate momentum damping strategies tailored to specific mission
requirements.

I. Introduction

Most spacecraft use chemical batteries to store excess energy generated by the solar panels during the
period of exposure to the sun. These batteries are used to provide power for the spacecraft subsystems
during the eclipse and are re-charged when the spacecraft is in the sunlight. However, the use of chemical
batteries introduces several problems, such as limited life cycle, shallow depth of discharge (approximately
20-30% of their rated energy-storage capacity), large weight and strict temperature limits (at or below 20oC
in a low-Earth orbit).

An alternative to chemical batteries is the use of flywheels to store energy. The use of flywheels as
“mechanical batteries” has the benefit of increased efficiency (up to 90% depth of discharge with essentially
unlimited life), and the ability to operate in a relatively hot (up to 40oC) environment. Most importantly,
flywheels offer the potential to combine the energy-storage and the attitude-control functions into a single
device, thus increasing reliability and significantly reducing the overall weight and spacecraft size. This
implies increased payload capacity and significant reduction of launch and fabrication costs. This concept,
termed the Integrated Power and Attitude Control System (IPACS) has been studied since the 1960s, but
it has become particularly popular during the last decade. A complete survey of IPACS has been given in
Refs. 1 and 2.

Variable Speed Control Moment Gyros (VSCMGs) have been used for attitude control and energy storage
for an IPACS in the authors’ previous work.3 The concept of a VSCMG was first introduced by Ford and Hall4

where it was called “gimballed momentum wheel.” The term VSCMG was coined in Ref. 5, emphasizing the
fact that these devices typically function as conventional CMGs. Whereas the wheel speed of a conventional
CMG is kept constant, the wheel speed of a VSCMG is allowed to vary continuously. A VSCMG can thus
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be considered as a hybrid between a reaction wheel and a conventional CMG. The extra degree of freedom,
owing to the wheel speed changes, can be used to avoid singularities. It also allows a VSCMG to be used as
an actuator in an Integrated Power/Attitude Control System (IPACS).1,3 The control algorithm performs
both the attitude and power tracking goals simultaneously.

It is well known that a VSCMG cluster can always generate an output torque with arbitrarily commanded
direction and magnitude. Moreover, it is also known that a gradient method with null motion can avoid
the singular states of VSCMGs. In these singular states the VSCMG cluster requires large control inputs
in order to generate the commanded output torque.6 Yet, if the VSCMG cluster is part of an IPACS with
strict power as well as attitude tracking requirements, there exist singular gimbal angle and wheel speed
configurations, for which the VSCMGs cannot meet both attitude and power tracking requirements.3

In the present article, a singularity avoidance method using single gimbal variable speed control moment
gyros (VSCMGs) is presented. It complements the results of Refs. 3 and 7 as well as those of Ref. 8 in
several aspects. Whereas Refs. 3 and 7 did not deal with the singularity problem explicitly, the present
paper deals specifically with this problem. Moreover, in Ref. 8 the authors restrict the discussion to the
case of attitude tracking only, whereas in the present article we include the case of simultaneous attitude
and power tracking. As shown in Section III this has several important repercussions to the singularity
classification and avoidance problem.

II. System Model and Preliminaries

There are several ways to configure a number of VSCMG units. The standard pyramid configuration
with four VSCMG units is emphasized in this article is shown in Fig. 1. The skew angle θ in Fig. 1 is chosen
as cos θ = 1/

√
3 (θ ≈ 54.74◦) so that the pyramid becomes half of a regular octahedron. This configuration

has been studied extensively because it is only once-redundant and its momentum envelope (see Section II-
B) is nearly spherical9 and three-axis symmetric.10 The mutually orthogonal unit vectors gi, si and ti,
i = 1, · · · , 4, are defined as in Refs. 6 and 11.
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Figure 1. A VSCMG system with pyramid configuration

The total angular momentum H of the VSCMG system is the vector sum of the individual momenta of
each wheel

H(γ1, · · · , γN ,Ω1, · · · ,ΩN ) =
N∑

i=1

hisi, (1)
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where hi(Ωi) is the angular momentum of ith wheel. The torque equation becomes

T = Ḣ =
N∑

i=1

hitiγ̇i +
N∑

i=1

siIwsi
Ω̇i, (2)

and in matrix form,

[C(Ω,γ) D(γ)]

[
γ̇

Ω̇

]
= T, (3)

where C : R
N × [0, 2π)N → R

3×N and D : [0, 2π)N → R
3×N are matrix-valued functions given by

C(Ω,γ) � [Iws1Ω1t1, · · · , IwsN
ΩNtN ] (4)

D(γ) � [Iws1s1, · · · , IwsN
sN ] (5)

and where γ � (γ1, . . . , γN )T ∈ [0, 2π)N and Ω � (Ω1, . . . ,ΩN )T ∈ R
N . It is well known that we can always

solve Eq. (3) for any given torque command T with a VSCMG system in the pyramid configuration. Yet,
it is desirable to keep rank C = 3. In the sequel we define as a “singularity of a VSCMG cluster” the rank
deficiency of the matrix C, even though the VSCMGs will be able to generate an arbitrary torque at such
cases. See Refs. 6 and 11 for more details.

A. Attitude and Power Tracking Control Law

In Ref. 1, the authors have introduced a control method for the simultaneous attitude and power tracking
problem for the case of a rigid spacecraft with N momentum wheels. These results have been extended to
the case of N VSCMGs in Refs. 3,7. By setting the gimbal angles in Ref. 3 to be constant, one can retrieve
the results of Ref. 1 as a special case.

The total kinetic energy stored in the wheels of the VSCMG cluster is

E � 1
2Ω

T IwsΩ (6)

where Iws � diag[Iws1 , · · · , IwsN
] ∈ R

N×N . Hence, the power (rate of change of the energy) is given by

P =
dE

dt
= ΩT IwsΩ̇

=
[

0 ΩT Iws

] [
γ̇

Ω̇

]
.

(7)

This equation is augmented to the attitude tracking equation (3), to obtain

Qpu = L (8)

where

u �
[

γ̇

Ω̇

]
, Qp �

[
C(Ω,γ) D(γ)
01×N ΩT Iws

]
, L �

[
T
P

]
.

The existence of a solution to Eq. (8) depends on the rank of the coefficient matrix Qp ∈ R
4×2N . If rankQp

= 4, then Eq. (8) always has a solution, for example,[
γ̇

Ω̇

]
= WQT

p (QpWQT
p )−1L, (9)

for some 2N × 2N weighting matrix W . However, if rankQp = 3, it is not possible to solve equation (8)∗.
In Ref. 3 the authors have shown that a sufficient (but not necessary) condition for rankQp = 4 is that
rankC = 3. This means that the issue of singularity avoidance for a VSCMG system (in terms of the rank
deficiency of C) becomes more pronounced in case of a power tracking requirement.

∗Notice that rank Qp ≥ 3, since rank [C(Ω, γ) D(γ)] = 3 for all Ω ∈ R
N and γ ∈ [0, 2π)N .
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B. Brief Review of the Singularities of a CMG system

Before continuing with the analysis of the singularities of VSCMGs, it is imperative to briefly review the
singularities of the conventional CMGs. This will also allow the introduction of the key terminology which
is essential in the ensuing analysis of VSCMGs.

For simplicity, and without loss of generality, let us assume that hi = 1 for i = 1, · · · , N . Then the torque
equation (3) becomes

C(γ) γ̇ = T (10)

where C(γ) = [t1, · · · , tN ]. In order to generate a torque T along an arbitrary direction, we need rank C(γ)
= 3 for all γ ∈ [0, 2π)N . If rankC(γs) �= 3 for some γs, however, γ̇ cannot be calculated for arbitrary torque
commands.† Thus, henceforth we define the singularities of a CMG system as the gimbal states γs for which
rankC(γs) = 2.‡ In the singular states all unit vectors ti lie on the same plane, and we can thus define a
singular direction vector u which is normal to this plane. That is,

uT ti = 0, ∀ i = 1, · · · , N. (11)

Moreover, ti is normal to gi by definition, so ti is normal to the plane spanned by gi and u. Geometrically
this means that each si has a maximal or minimal (negatively maximal) projection onto the singular vector
u, i.e., the dot product u · si is maximal or minimal,13 as shown in Fig. 2.

gi

ti(εi = +1)si(εi = +1)

u

φi

ti(εi = −1)

si(εi = −1)

Figure 2. Vectors at a singular gimbal state

For a given singular vector u �= ±gi , there are two possibilities:

u · ti = 0 and u · si > 0, or u · ti = 0 and u · si < 0. (12)

Defining εi � sign(u · si), the torque axis vector and the spin axis vector at a singular state can be obtained
as

ti = εi gi × u/|gi × u|, u �= ±gi, i = 1, · · · , N (13)

si = ti × gi = εi (gi × u) × gi/‖gi × u‖, u �= ±gi, i = 1, · · · , N (14)

and therefore the total angular momentum at the singular states corresponding to a singular direction u is
expressed as12–14

H =
N∑

i=1

si =
N∑

i=1

εi (gi × u) × gi/‖gi × u‖, u �= ±gi. (15)

†Even in this case, there may exist a solution γ̇ to (10), if the required torque T lies in the two-dimensional range of C(γs),
but this can be treated as an exceptional case.

‡Rank C = 1 can happen only in very special configuration, for example, in roof-type configuration,12 so we neglect this
case.
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Hence, given a set of εi’s, we can draw a singular surface, which is defined as the locus of the total momentum
vector at the singular states, for all u ∈ R

3 with ‖u‖ = 1,u �= ±gi where ‖ · ‖ denotes the Euclidian norm.
Figure 3 shows examples of these singular surfaces for a pyramid configuration for two different combinations
of ε1, ε2, ε3, ε4.

Among the singular surfaces of a CMG system, of a special interest is the angular momentum envelope,
which is defined as the boundary of the maximum workspace of the total angular momentum H. The angular
momentum envelope of a CMG cluster in a pyramid configuration consists of two types of singular surfaces
which are connected to each other smoothly. The first type corresponds to the case when all εi are positive,
i.e., the angular momentum of each CMG unit has a maximal projection onto the singular direction§ as shown
in Fig. 3(a). Notice that this singular surface does not cover the whole momentum envelope, and there exist

Figure 3. Singular surfaces of CMGs in pyramid configuration a) ε1 = ε2 = ε3 = ε4 = +1, b) ε1 = −1, ε2 = ε3 =
ε4 = +1

holes on the surface. These holes are smoothly connected to the second type of the singular surface, for
which one and only one of the εi, i ∈ {1, · · · , N} is negative (or only one positive due to symmetry).12,13

This singular surface produces a trumpet-like funnel at the holes which completes the envelope and is shown
in Fig. 3(b).

In conclusion, the complete momentum envelope is composed of the singular surface with εi > 0 for
i = 1, · · · , N and the external portion of the singular surface with one and only one negative εi. Figure 4
shows the complete angular momentum envelop with a cut revealing part of the rather complicated internal
singular surface.

III. Singularity Analysis of VSCMGs With Power Tracking

In order to investigate the existence of null motion for the case of both attitude and power tracking, we
first notice that in this case the following conditions must be true

C(Ω(t),γ(t))γ̇(t) + D(γ(t))Ω̇(t) = 0, at time t (16)
C(Ω(t + dt),γ(t + dt))γ̇(t + dt) + D(γ(t + dt))Ω̇(t + dt) = 0, at time t + dt (17)

§The case of all negative εi is also on the angular momentum envelope due to symmetry.
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Figure 4. Angular momentum envelope of CMGs

and

ΩT (t)IwsΩ̇(t) = 0, at time t (18)

ΩT (t + dt)IwsΩ̇(t + dt) = 0, at time t + dt (19)

where C(Ω,γ) and D(γ) as in (4)-(5). In a similar fashion as in Ref. 6, these conditions lead to the condition
that a null motion exists if and only if there exist γ̈(t) ∈ R

N and Ω̈(t) ∈ R
N such that[

C(Ω(t),γ(t)) D(γ(t))
01×N ΩT (t)Iws

][
γ̈(t)
Ω̈(t)

]
=

[
ζ1

ζ2

]
, (20)

where ζ1 ∈ R
3 and ζ ∈ R from

ζ1 � −2
N∑

i=1

Iwsitiγ̇iΩ̇i +
N∑

i=1

IwsiΩisiγ̇
2
i , (21)

ζ2 � −Ω̇
T
IwsΩ̇ = −

N∑
i=1

Iwsi
Ω̇2

i . (22)

Next, we show that a solution to (20) exists if and only if rank M = 2, where

M �
[

Iws1u
T s1 Iws2u

T s2 · · · IwsN
uT sN

Iws1Ω1 Iws2Ω2 · · · IwsN
ΩN

]
. (23)

To this end, notice that a solution to (20) exists if and only if ζ � [ζT
1 ζ2]T ∈ R[Qp], equivalently, if and

only if vT ζ = 0 for all nonzero v ∈ R⊥[Qp]. Notice that

R⊥[Qp] = {v = [vT
1 v2]T ∈ R

4 : v1 ∈ R⊥(C), vT
1 D(γ) + v2ΩT Iws = 0 }, (24)

which, via the fact R⊥(C) = span{u} leads to the condition

[uT η]

[
ζ1

ζ2

]
=

N∑
i=1

Iwsiu
T si Ωiγ̇

2
i − η

(
N∑

i=1

IwsiΩ̇
2
i

)
= 0 (25)
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for all η such that uT D(γ) + η ΩT Iws = 0, that is, for all η such that

[Iws1u
T s1, · · · , IwsN

uT sN ] + η [Iws1Ω1, · · · , IwsN
ΩN ] = 0. (26)

If rank M = 2, then there does not exist an η ∈ R which satisfies (26), thus sufficiency follows. On the
other hand, if rank M = 1, then there exists a nonzero scalar η satisfying (26). This yields

Iwsi
uT si = −ηIwsi

Ωi, i = 1, . . . , N.

Thus, Eq.(25) becomes

−η

(
N∑

i=1

IwsiΩ
2
i γ̇

2
i +

N∑
i=1

Iwsi
Ω̇2

i

)
= 0 (27)

which cannot hold for any [γ̇, Ω̇] �= 0. In case rank M = 1 it is therefore impossible to satisfy both the
angular momentum (torque) and the kinetic energy (power) requirements for singularity avoidance using
null motion. Therefore, the inescapable singularities of a VSCMG system used for combined attitude control
and power tracking is completely characterized by the rank of the matrix M in (23). Notice that since the
wheel speeds Ωi are all positive by the definition of the spin axes si, the rank deficiency of M can occur only
when εi � sign(u · si) = +1 for all i = 1, . . . , N .

IV. The Angular Momentum Envelopes of a VSCMG Cluster

In this section the inescapable singularities of a VSCMG system and their relation to the rank deficiency
of the matrix M in (23) are studied in more detail. For this purpose, we introduce three singular surfaces
in the three-dimensional angular momentum space. The first surface is the momentum envelope for given
kinetic energy, the second surface is the momentum envelope for given wheel speeds, and the third surface
is the momentum envelope for given kinetic energy and gimbal angles. With the help of these three surfaces
we can visualize the geometric conditions under which a singularity is either escapable or inescapable.

A. The Momentum Envelope for Given Kinetic Energy

In this section we define the angular momentum envelope of a VSCMG cluster for a given kinetic energy, and
we show that the total angular momentum vector reaches this envelope if and only if the VSCMG cluster
encounters an inescapable singularity (i.e., rankM=1).

To this end, consider the case when a power command P (t) is given for all t0 ≤ t ≤ tf . Then the kinetic
energy stored in the VSCMG cluster for t ≥ t0 can be computed from E(t) =

∫ t

t0
P (t)dt + E(t0). Suppose

that E(t̄) is given at some instant t = t̄. The objective is to find the maximum workspace of H(t̄) with
the given value of the kinetic energy. The boundary of the maximum angular momentum workspace can be
found by solving the following maximization problem.

For a given singular direction u, find the gimbal angles γi and wheel speeds Ωi that maximize
the function J defined by

J � H · u =
N∑

i=1

Iwsi
Ωiu · si =

N∑
i=1

αi(γi)Iwsi
Ωi (28)

subject to the constraints
N∑

i=1

Iwsi
Ω2

i = 2E (29)

α2
i (γi) ≤ α2

maxi
, i = 1, . . . , N (30)

where αi(γi) � u · si and αmaxi
is its maximum value. Since αi becomes maximum when si has

a maximum projection onto u as shown in Fig. 2, αmaxi is given by αmaxi =
√

1 − (gi · u)2.
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In Appendix A of Ref. 6, it is shown that the solution to this maximization problem is

α∗
i = αmaxi

, Ω∗
i =

αmaxi

2λ∗
0

, i = 1, · · · , N (31)

where

λ∗
0 � 1√

8E

(
N∑

i=1

Iwsi
α2

maxi

) 1
2

.

Equation (31) implies that the gimbal angles of the VSCMGs are in a singular configuration with all εi = +1,
and that each wheel has a speed which is proportional to u · si. It can also be shown that the solution (31)
corresponds to an inescapable singularity when rankM = 1 (see Appendix A in Ref. 6 for the details). In
summary, an inescapable singularity for the case of attitude/power tracking for a VSCMG cluster occurs
when the wheels have maximum angular momentum along the singular direction with the given kinetic
energy constraint.

The above observations also lend themselves to a method for drawing the angular momentum envelope
of a VSCMG system with given kinetic energy constraint. Given a singular direction u, each spin axis si

is determined as in the conventional CMGs case, i.e., from Eq. (14) with all εi = +1, and with the wheel
speeds determined from Eq. (31). Hence, the total angular momentum at this singular configuration for a
given singular direction u can be expressed as

H =
N∑

i=1

(gi × u) × gi

‖gi × u‖ Ω∗
i Iwsi =

1
2λ∗

0

N∑
i=1

(u − gi(gi · u))Iwsi , (32)

where the last equality follows from ‖gi × u‖ = max{si · u} = αmaxi
.

Equation (32) defines an ellipsoid in the momentum space. If the total angular momentum vector reaches
this surface and the reference attitude (torque requirement) forces it outside this surface, then the VSCMG
cluster cannot meet both the attitude and power tracking requirements. Contrary to the CMG case, shown
in Fig. 3(a), the momentum envelope of a VSCMG cluster with given kinetic energy has no holes. The reason
is that when the singular direction u is along a gimbal axis gi, the angular speed of the ith wheel does not
have a component along u since si⊥gi and thus si⊥u. Hence, the ith wheel speed does not contribute to
the maximization of the total angular momentum along u. Thus, Ωi may be taken to be zero with all the
other wheels having higher speeds (in order to satisfy the kinetic energy constraint).

B. A Geometric Picture of the Inescapable Singularity Case

A nice geometric picture emerges for describing the occurrence of inescapable singularities using the previous
concept of the angular momentum envelope. In addition to the angular momentum envelope for given kinetic
energy introduced in the previous section, one can also define the angular momentum envelope of a VSCMG
system with given energy and a given set of gimbal angles. Given the total kinetic energy E and the gimbal
angles, this envelope is defined as the boundary of the maximum workspace of the total momentum H as
the wheel speeds vary, but the total energy E and the gimbal angles γi’s are kept constant. This surface can
be drawn by solving the following maximization problem.

Maximize

J � H · u =
N∑

i=1

Iwsi
Ωiu · si =

N∑
i=1

αiIwsi
Ωi (33)

subject to the constraint
N∑

i=1

Iwsi
Ω2

i = 2E

for each u ∈ R
3, ‖u‖ = 1, while the gimbal angles γi’s are fixed.

The solution to this maximization problem is similar to the one in Section IV-A and thus, it is omitted.
Its solution yields

Ω∗
i =

αi

2λ∗
0
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where

λ∗
0 � 1√

8E

(
N∑

i=1

Iwsi
α2

i

) 1
2

.

In addition to the angular momentum envelope for given kinetic energy and given kinetic energy and
gimbal angles, one can also construct the angular momentum envelope for given wheel speeds using the
method described in Section II-B. The interplay between the latter two surfaces provides a clear picture for
the occurrence of the inescapable singularities.

Figures 5 and 6 show these three envelopes at a singular configuration corresponding to the singular
direction u = [0, 0, 1]T with εi > 0 for i = 1, 2, 3, 4. In these figures, surface A is the momentum envelope
with given wheel speeds, surface B is the momentum envelope with given energy and gimbal angles, and
surface C is the momentum envelope with given kinetic energy.

Figure 5. Escapable singularity of VSCMG

Figure 6. Inescapable singularity of VSCMG

Figure 5 shows a case when the gimbal angles are singulary configured with all εi > 0, but the wheel speeds
are not equal to the maximizing solution of Eq. (31) hence rankM �= 1. Notice that the total momentum
vector H lies inside the momentum envelope with given energy (surface C). As the gimbal angles vary with
the wheel speeds fixed, H will move inside the surface A, thus the projection of the change of the angular
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momentum due to the gimbal changes along the singular direction is ∆H · u
∣∣∣
γ̇

< 0. As the wheel speeds

vary with gimbal angles and total energy fixed, H will move inside the surface B, thus the projection of the
change of the angular momentum due to the wheel speed changes along the singular direction, ∆H ·u

∣∣∣
Ω̇

, can

be either positive or negative. This is shown in Fig. 5. Hence, the term ∆H · u
∣∣∣
Ω̇

can cancel the negative

term ∆H · u
∣∣∣
γ̇
. Therefore, a gimbal angle change is possible without violating the angular momentum and

energy constraints. As a result, in this case the singularity is escapable using null motion. On the other
hand, Fig. 6 shows an inescapable singularity, i.e., when rankM = 1. The momentum vector H reaches the
envelope C. At this value of H, both surface A and surface B are normal to the singular direction u, so both
∆H ·u

∣∣∣
γ̇

and ∆H ·u
∣∣∣
Ω̇

are negative. Therefore, these two cannot cancel each other. This means that gimbal

angle changes and wheel speed changes while ∆H = 0 is impossible. Thus escaping from the singularity
without violating either the momentum or the power constraints is impossible.

V. A Condition for Singularity Avoidance

If a VSCMGs cluster has a pyramid configuration with skew angle θ (see Fig. 1) and each wheel has
the same moment of inertia Iw � Iws1 = Iws2 = Iws3 = Iws4 , it can be shown that the momentum en-
velope with energy constraint E becomes an ellipsoid with the semi-axes of lengths

√
4EIw(1 + cos2 θ),√

4EIw(1 + cos2 θ) and
√

8EIw sin θ (see Appendix B in Ref. 6 for the proof of this fact). This provides a
criterion for detecting whether the VSCMGs will encounter an inescapable singularity.

Theorem 1 Consider a VSCMG cluster used for attitude and power tracking. Assume that the VSCMG
cluster has a pyramid configuration with angle θ and the wheels have the same moment of inertia Iw. Then,
for a given energy command history E(t) and angular momentum command history H(t) for t0 ≤ t ≤ tf ,
the VSCMG cluster encounters an inescapable singularity, if and only if there exist t̄ ∈ [t0, tf ] such that

H2
x(t̄)

4E(t̄)Iw(1 + cos2 θ)
+

H2
y (t̄)

4E(t̄)Iw(1 + cos2 θ)
+

H2
z (t̄)

8E(t̄)Iw sin2 θ
� 1 (34)

where Hx(t̄),Hy(t̄),Hz(t̄) are the components of H(t̄) in the body frame.

Specifically, when the skew angle is θ = 54.74◦, then cos θ = 1/
√

3 and sin θ =
√

2/3 and the ellip-

soid becomes a sphere with radius
√

16
3 E(t̄)Iw. Therefore, the following is an immediate consequence of

Theorem 1.

Corollary 1 Consider a VSCMG cluster used for attitude and power tracking. Assume that the VSCMG
cluster has a regular pyramid configuration (skew angle θ = 54.74◦) and the wheels have the same moment
of inertia Iw. Then, for a given energy command history E(t) and angular momentum command history
H(t) for t0 ≤ t ≤ tf , the VSCMG cluster encounters an inescapable singularity, if and only if there exist
t̄ ∈ [t0, tf ] such that

‖H(t̄)‖ �
√

16
3

E(t̄)Iw. (35)

One method to solve the inescapable singularity problem for VSCMGs for an IPACS is therefore to
increase the workspace of the VSCMGs by increasing the inertia of the wheels as suggested by (35). This
means that the wheel size must be carefully determined depending on the spacecraft mission. Another
possibility is to perform momentum dump/desaturation using external torque actuators such as magnetic
torquers or gas thrusters. With this method, we can decrease ‖H(t)‖ thus keeping H(t) within the ellipsoid
(or sphere) defined in Theorem 1 (or Corollary 1).

Once we know that the VSCMGs will never encounter inescapable singularities for a given attitude and
power command from Theorem 1, we can apply the gradient method introduced in Ref. 11 by replacing Q
with Qp, i.e., [

γ̇

Ω̇

]
null

= −k[I2N − W̃ 1/2(QpW̃
1/2)†Qp]W̃

⎡
⎣ ∂κ

∂γ

T

∂κ
∂Ω

T

⎤
⎦ (36)
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where A† denotes the Moore-Penrose inverse of the matrix A. The control law (36) will escape all singularities
of the VSCMG system while tracking the required attitude and power reference commands.

VI. Numerical Examples

A numerical example is provided to test the proposed singularity avoidance method in Eq. (36). The
system parameters and the reference attitude trajectory is identical with those used in Ref. 11, but in
addition, the power trajectory also must be tracked in this simulation.

The results from two numerical simulations are presented below. In the first case only the attitude and
power tracking control of Eq. (9) is applied. In the second case the singularity avoidance control of Eq. (36)
is used simultaneously with the torque/power generating solution of (9). Figure 7 shows the reference and
actual attitude histories. In these plots the subscript d designates the desired quaternion history. The
spacecraft attitude tracks the desired attitude exactly after a short period of time. The reference and the
actual power profiles are shown in Fig. 8. The two profiles overlap with each other perfectly and appear as a
single line in Fig. 8. Figures 7 and 8 show that both attitude and power tracking are successfully achieved.
Figure 9 shows that the matrix C becomes close to being singular at approximately t = 4000 sec without
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Figure 7. Reference and Actual Attitude Trajectory

any singularity avoidance algorithm. The control input Ω̇ becomes very large during this period, since the
weighting matrix W in Eq. (9) makes the VSCMGs operate in reaction wheel mode, and thus Ω̇ has to
generate the required output torque. Note that without the weighting matrix, the gimbal rate input γ̇ would
become very large, instead of Ω̇. Both cases are undesirable.

On the other hand, Fig. 10 shows that singularities are successfully avoided using the null motion al-
gorithm of Eq. (36). Although slightly larger control inputs γ̇ are needed to reconfigure the gimbal angles
as the matrix C approach the singular states, the overall magnitudes of both γ̇ and Ω̇ are kept within a
reasonable range, contrary to the case without a singularity avoidance strategy. The attitude and power
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history profiles are exactly the same as in the previous case and are shown in Figs. 7 and 8. It should be
pointed out that the attitude and the power time histories with null motion are identical to those without
null motion, that is, the null motion has affected neither the output torque nor the delivered power to the
spacecraft bus, as expected.

Figure 11 shows that the singularity cannot be avoided even using the null motion method, if the criterion
in Theorem 1 is violated. In Fig. 11(a), the magnitude of the total angular momentum ‖H‖ and the radius

of the momentum envelope of the VSCMGs, which is equal to
√

16
3 EIw, are plotted. During the period

when ‖H(t)‖ <
√

16
3 E(t)Iw, singularities are avoided using null motion, but when ‖H(t)‖ ≈

√
16
3 E(t)Iw

(near t = 6600 sec) the condition number κ(γ,Ω) increases, as shown in Fig. 11(b).
At this instant, the value of the matrix M defined in Eq. (23) is given by

M ≈

⎡
⎢⎣ 0.6844 0.6719 0.4073 0.4686

0.6844
0.0011

0.6719
0.0011

0.4073
0.0011

0.4686
0.0011

⎤
⎥⎦ .

It can be seen that at this instant the row vectors of the matrix M are parallel to each other, as expected
by the analysis of Section IV.

VII. Conclusions

In this article the singularity problem associated with a VSCMGs system with a power tracking constraint
is introduced and studied in detail. A VSCMG system has more degrees of freedom than a conventional
CMG system, so in theory it can generate arbitrary torques. However, it cannot generate arbitrary torque
and power simultaneously for some gimbal angle and wheel speed configurations.

A gradient-based method using null motion has been proposed to avoid the singularities of a VSCMG
cluster, which is commanded so as to generate both attitude torque and power for an IPACS. It has been
shown that the VSCMG system may encounter inescapable singularities, which cannot be avoided using the
gradient method with null motion. We have shown that all such inescapable singularities are external, that is,
they all lie on the momentum envelope subject to the kinetic energy constraint of the VSCMGs. Geometric
and algebraic considerations provide a criterion for determining whether the VSCMGs will encounter an
inescapable singularity. This criterion can be used to determine the size of a VSCMG system for a given
attitude/power mission.
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Figure 9. Simulation Without Singularity Avoidance
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Figure 10. Simulation With Singularity Avoidance.
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