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The Relation Between 
the 3-D Bode Diagram 

and the Root Locus

B
ode diagrams
and root locus
plots have
been the cor-
nerstone of
control analy-

sis and synthesis for sin-
gle-input, single-output
(SISO) systems since the
seminal work of Bode [1]
and Evans [2]. Along with
the Nyquist plot [3], these
techniques form the major
part of what is commonly
known as classical control methods. Three-dimensional
(3-D) extensions of the classical Bode, Nyquist, and root
locus plots have also been proposed [4], where the third
dimension is either the frequency (in
the Bode or Nyquist plots) or the gain
(in root locus plots). The latter is
called a gain plot in [4] and provides
explicit information on the damping and frequency of the
closed-loop eigenvalues as a function of the forward gain.
An alternative extension of classical Bode analysis was
introduced in the classical text on flight mechanics [5].

Specifically, in [5, pp.
112–153] the authors show
the interrelationship be-
tween the root locus and
frequency response dia-
grams. By adding a third
dimension to the classical
root locus plot (the gain)
they show how this 3-D plot
can be used to compute the
location of the closed-loop
roots as the intersection of
paths of steepest descent
with the corresponding

contours of the logarithmic magnitude plot. Since this
technique is not widely known and, to our knowledge,
does not appear in standard undergraduate textbooks, the

purpose of the present article is to
revisit the generalized Bode diagram
technique and demonstrate its useful-
ness for gaining a deeper understand-

ing of both Bode and root locus analysis. Specifically, we
provide additional insights on the connection between
these two analysis methods, and we demonstrate this con-
nection with several examples.

Insights into the connection between 
these classical methods

© PHOTODISC AND ARTVILLE, LLC.

By Panagiotis Tsiotras

February 200588
0272-1708/05/$20.00©2005IEEE

IEEE Control Systems Magazine



February 2005 89IEEE Control Systems Magazine

The Transfer Function 
and the Laplace Transform
The Bode and root locus methods work with the transfer
function. The transfer function G(s) of a system is defined
as the ratio of the Laplace transform of the output to the
Laplace transform of the input. In other words,

G(s) := Y(s)
U(s)

, (1)

where Y(s) = L[y(t)] and U(s) = L[u(t)] and L(·) denotes
the Laplace transform. Here y(t) and u(t), t ≥ 0, are the out-
put and input signals, respectively, of the forced (zero ini-
tial state) response. A consequence of (1) is the input-
output relationship

Y(s) = G(s)U(s). (2)

The Laplace transform of a function f(t), t ≥ 0, is
defined by 

F (s) = L[f(t)] :=
∫ ∞

0
f(t) e−st dt. (3)

Of course, for F (s) to be well defined we need to make sure
that the infinite integral in (3) exists. One way to ensure this
existence is to impose the condition that the magnitude of
the integrand becomes small for large values of the argument
t. However, this condition may not be enough. For example,
the integral from zero to infinity of f(t) = 1/t does not exist.
To make sure that the infinite integral in (3) exists, we need
to ensure that its integrand becomes small fast enough. Expo-
nential decay of the integrand in (3) is sufficient.

The role of the exponential term e−st in the definition
of the Laplace transform now becomes evident: Its pur-
pose is to ensure that the integrand f(t) e−st decays to
zero fast as t → ∞. Since the function e−st decays very
quickly for large values of t
whenever s has a positive real
part, the Laplace transform can
be defined for a large class of
functions f(t). Had we multiplied
f(t) with another function that
did not decay fast enough as
t → ∞,the corresponding trans-
form would be valid for very few
functions. Such transforms do
exist—the Hankel, Stieljes, and
Mellin transforms are but a few
examples [6]—but are not as
widely used as the Laplace
transform.

By far, however, the most impor-
tant reason for the ubiquitous use
of Laplace transforms in linear sys-
tem theory is the property 

L
[∫ t

0
f(t − τ)g(τ) dτ

]
= F (s)G(s), (4)

where F (s) and G(s) are the Laplace transforms of the
functions f(t) and g(t), respectively. Convolution in the
time domain therefore corresponds to multiplication in
the Laplace domain. The convolution integral in (4) arises
in the solution of linear, time-invariant differential equa-
tions. For instance, the solution to the differential equa-
tion ẋ(t) = ax(t) + u(t) with x(0) = 0 is given by

x(t) =
∫ t

0
e a(t−τ)u(τ) dτ.

Therefore, instead of solving differential equations in the
time domain, we can solve algebraic equations in the
Laplace domain! 

Bode Plots
Let us now return to the input-output relationship (2). The
first question one may ask is whether the transfer function
defined in (1) is independent of the input U(s). This prop-
erty is not readily evident from (1), but it turns out to be
the case for linear systems. In fact, the transfer function of
a linear, time-invariant system is uniquely determined by
the Laplace transform of the output response y(t) = g(t) of
the system to an impulse u(t) = δ(t), that is,

G(s) =
∫ ∞

0
g(t) e−st dt.

Since s is, in general, a complex number, G(s) is also a
complex number. Let us denote its real and imaginary
parts by Gx and Gy, respectively, so that G(s) = Gx + iGy.

The transfer function G(s) can also be represented using
polar (or phasor) notation as

Figure 1. (a) Representation of G(s) = Gx + iGy in polar (phasor) form. The complex
number G(s) is also characterized by its magnitude |G(s)| and angle φ = �G(s); (b)
using this representation, the input and the output are vectors rotating in the complex
plane. Whether Y(s) leads or lags U(s) depends on the argument of G(s).
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G(s) = |G(s)| eiφ, (5)

where |G(s)| :=
√

G2
x + G2

y and φ = �G(s) := arctan2 (Gy,

G x), where −π ≤ arctan2(Gy, Gx) ≤ π is the four-quadrant
inverse tangent of Gx and Gy; see Figure 1(a).

The magnitude Bode diagram of a system with trans-
fer function G(s) provides information about the level of
amplification of the input signal U(s). Specifically, since
the output is given by Y(s) = G(s)U(s) (see also Figure
2), one obtains

|Y(s)| = |G(s)||U(s)|. (6)

That is, the magnitude of the output is amplified (or
attenuated) by the factor |G(s)|. By the same token, the
angle (or phase) Bode diagram provides information
about the relative angles of the signals Y(s) and U(s) in

the complex plane. This information is evident from
the formula

�Y(s) = �G(s) + �U(s). (7)

Notice that if 0 < �G(s) < π, the output signal leads the
input signal U(s). Conversely, if −π < �G(s) < 0, then
the output Y(s) lags U(s); see Figure 1(b).

Plots of |G(s)| and �G(s) as the complex variable
s = σ + iω varies along a path in the complex plane are
called generalized Bode diagrams. The simplest case is to
use straight lines in the s-plane. Generalized Bode dia-
grams are plots of 20 log10|G(s)| and �G(s) versus log10|s|
when s varies along a straight line [5].

There are four types of generalized Bode diagrams
that are used often [5, p. 135]. These diagrams corre-
spond to four different paths in the complex plane,
along which s is allowed to vary. If s = iω, that is, if s
varies along the imaginary axis, we have the iω-Bode dia-
gram, or simply the Bode diagram. The second type is
the σ -Bode diagram, in which s = ±σ . In a σ -Bode dia-
gram the variable s moves along the real axis. The third
type of Bode diagram is the ζ -Bode diagram defined
along the radial directions s = |s|(−ζ ± i

√
1 − ζ 2) . Both

the iω-Bode diagram and the σ -Bode diagram are special
cases of the ζ -Bode diagram. The former corresponds to
the choice of s = iω , ζ = 0, whereas the latter corre-
sponds to the choice s = ±σ , ζ = ±1. The fourth type of
Bode diagram is the shifted Bode diagram, in which the
path of s is given by the line s = σ0 + iω, where σ0 is
fixed. The paths of the shifted Bode diagram are there-
fore lines parallel to the imaginary axis.

Figure 2. A block diagram for a single-input, single-output
system. The transfer function G(s) is defined as the ratio of
the Laplace transform of the output signal Y(s) to the Laplace
transform of the input signal U(s). For linear time-invariant
systems the transfer function G(s) is independent of the
choice of input U(s).

U(s) Y(s)
G(s)

Figure 3. (a) The surface plot of the magnitude of the transfer function G(s) = (s + 1)/s2 plotted in decibels. The peak is
located at the pole, and the well is located at the zero. The solid dark lines are the contours of constant magnitude. (b) View
of the surface from the top.
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The 3-D Bode Diagram
Instead of computing a generalized Bode diagram for dif-
ferent choices of lines in the complex plane, we can com-
pute the magnitude of |G(s)| for all values of s ∈ C to
obtain a surface S(σ, ω) = |G(s)|, s = σ + iω in the 3-D
space. We call this the 3-D Bode diagram. For the rational
transfer function

G(s) = κ (s + z1)(s + z2) · · · (s + zm)

(s + p1)(s + p2) · · · (s + pn)
, (8)

the surface S(σ, ω) has a collection of peaks and wells. In
fact, assuming no pole/zero cancellations, all peaks are
located at the poles p1, p2, . . . , pn of G(s) and all wells are
located at the zeros z1, z2, . . . zm of G(s). When plotting the
magnitude of G(s) on the logarithmic scale, all peaks and
wells are infinitely high or infinitely deep, respectively,
which can be seen by taking the logarithm of both sides of
(8) to obtain

log10 |G(s)| = log10 |κ| +
m∑

i=1

log10 |s + zi|

−
n∑

i=1

log10 |s + pi|. (9)

Figure 3(a), for instance, shows the 3-D magnitude Bode
diagram of the transfer function 

G(s) = s + 1
s2

. (10)

Figure 4. The isomagnitude (solid) and isophase (dashed)
curves of the transfer function G(s) = (s + 1)/s2 on the com-
plex plane. The two sets of curves are perpendicular to each
other. Stated differently, the isophase curves are always par-
allel to the local gradient of |G(s)|. By comparing with Figure
3(b) we see that these curves correspond to the view of the 3-
D Bode diagram as seen from the top.
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Figure 5. (a) Classical magnitude Bode diagram of the transfer function G(s) = (1/[s(s + 1)]. There is one corner frequency
at ωc = 1 rad/s, corresponding to the pole s = −1. The mechanism by which the off-imaginary axis pole s = −1 influences the
magnitude of G(s) on the imaginary axis is revealed only by looking at the 3-D magnitude Bode diagram. (b) The 3-D magni-
tude Bode diagram of G(s). The pole at s = −1 creates a uniform change in elevation. The change is felt on the imaginary
axis at the corner frequency ωc.
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A peak at p = 0 rises like a mountain over the landscape of
S(σ, ω), and a bottomless well is located at the zero z = −1.

On this landscape we can draw the curves of constant
magnitude of G(s), that is, |G(s)|dB = const. These are the
isomagnitude curves of G(s). The isomagnitude curves are
shown as dark solid curves in Figure 3. When looking down
from the positive vertical axis, we see the view shown in
Figure 3(b). The isomagnitude curves now appear as pre-
cisely the level sets of the surface S(σ, ω).

We can also draw the constant-angle curves of G(s),
that is, �G(s) = const. These curves are the isophase or
isoargument curves [5, pp. 112–115]. The isophase curves

are shown as dotted lines in Figure 4. The isophase curves
are perpendicular to the isomagnitude curves. To see why,
recall from (5) that G(s) = |G(s)|eiφ . Therefore,

dG(s) = d|G(s)|eiφ + i dφ|G(s)| eiφ. (11)

Changes in G(s) of constant magnitude correspond to
d|G(s)| = 0 while isophase changes correspond to dφ = 0.
From (11) it follows that 

dG(s)
∣∣∣
d|G(s)|=0

= i dφ|G(s)| eiφ = dφ|G(s)|ei(φ+ π
2 ) (12)

and

dG(s)
∣∣∣
dφ=0

= d|G(s)| eiφ. (13)

The complex numbers dφ|G(s)| ei(φ+ π
2 ) and d|G(s)| eiφ are

perpendicular to each other since their arguments differ
by π/2; see also Figure 1. As a result, isophase curves are
normal to isomagnitude curves. Stated differently, the
paths of constant angle of G(s) are parallel to the gradient
of |G(s)| at each point. The orthogonality between the
isophase and isomagnitude curves may also be inferred
directly from the properties of the conformal mapping
s �→ G(s) [7, pp. 368–369]. The isophase curves of (10) are
shown in Figure 4 along with the isomagnitude curves.

The 3-D magnitude Bode diagram also elucidates the
effect of the off-imaginary axis poles and zeros on the magni-
tude of the classical Bode diagram. Recall that the classical

Figure 7. Block diagram of a closed-loop system with pro-
portional feedback. Stability of the closed-loop system is
determined by the location of the roots of the characteristic
polynomial in the complex plane. The collection of the roots
of the characteristic polynomial as K varies between zero
and infinity comprises the root locus.

U(s) Y(s)
G(s)

K

R(s) +
−

Figure 6. (a) Classical magnitude Bode diagram of the transfer function G(s) = (1/[(s2 + 1)(s2 + s + 25)]. There are two
corner frequencies, namely, ωc1 = 1 rad/s and ωc2 = 5 rad/s. (b) The 3-D magnitude Bode diagram of G(s). The pole at
s = −0.5 + i4.97 creates a  change in elevation. This change is felt on the imaginary axis at the corner frequency ωc2. Notice
that the larger the damping ratio, the farther away from the imaginary axis the pole is located and, hence, the less significant
is this effect on the frequency axis.
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magnitude Bode diagram is the plot of |G(iω)|dB versus the
frequency ω. Therefore, the classical magnitude Bode dia-
gram looks at only a thin slice of the 3-D Bode diagram,
namely the variation of the magnitude of the transfer func-
tion G(s) along the imaginary (or frequency)
axis. The traditional construction of the Bode
diagram using graphical techniques, as taught
in every undergraduate control textbook,
instructs that corner points be introduced at
each frequency, corresponding to a pole or zero
of the transfer function, regardless of whether
these poles or zeros are on the imaginary axis
or not! These corner points modify the slope of
the magnitude Bode diagram at each particular
frequency. The corner points increase the slope
by 20 dB/decade at each zero of the transfer
function and decrease the slope by the same
amount at each pole. What it is not at all clear
from this construction, however, is why and
how these off-imaginary poles/zeros have an
effect on the magnitude of G(s) on the imagi-
nary axis.

Consider, for example, the transfer function

G(s) = 1
s(s + 1)

,

which has two poles, one of which is on the
imaginary axis (actually, at the origin), and the
other at s = −1. The magnitude Bode diagram
of this transfer function is shown in Figure
5(a). The slope is −20 dB/decade up to the cor-

ner frequency ωc = 1 rad/s. After that, the slope decreases
to −40 dB/decade. But how does the pole at s = −1 affect
the slope of the classical Bode diagram on the imaginary
axis for frequencies larger than ωc?
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Figure 8. The isomagnitude (solid) and isophase (dashed) curves of the
transfer function G(s) = (s + 1)/[(s2 + 2s + 1)(s − 2)]. The two sets of
curves are perpendicular to each other. The root locus follows the isophase
curves that satisfy the condition �G(s) = 180◦ ± k360◦, k = 0,±1,±2, . . . .

The root locus is shown by a thicker line. This root locus has the unusual
property that three poles meet at the origin, forming a so-called triple point.
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the poles, and the wells correspond to the zeros. The green line shows the path to be followed by a ball released from one of
the peaks. This path corresponds to steepest descent. (b) View from the top. The path traced by the ball is the root locus; com-
pare with Figure 8.
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The 3-D Bode diagram, shown in Figure 5(b), reveals the
hidden connection. The pole at s = −1 changes the eleva-
tion of the 3-D Bode landscape. This change in elevation is
uniform in every direction around the point s = −1. The

effect of this change in elevation is felt on the imaginary
axis at exactly the corner frequency ωc = 1 rad/s. Each
pole or zero changes the elevation of the whole landscape,
and its influence is felt at the corresponding frequency on

the imaginary axis.
A second example is shown in Figure 6, where

the classical Bode diagram and the 3-D magni-
tude Bode diagram of the transfer function

G(s) = 1
(s2 + 1)(s2 + s + 25)

are depicted. This transfer function has a pure-
ly imaginary pair of poles at s1,2 = ±i and
another complex pair at s3,4 = −0.5 ± i 4.97.
The corner frequencies are at ωc1 = 1 rad/s
and ωc2 = 5 rad/s. The pole at s = −0.5 + i 4.97,
although not on the imaginary axis, creates a
change in the elevation of the 3-D Bode magni-
tude landscape. This change is felt on the imag-
inary axis at the corner frequency ωc2 .
Moreover, the damping ratio ζ of the pole
plays a significant role in the shape of the fre-
quency response around the corner frequency.
The larger the damping ratio, the farther away
from the imaginary axis (for the same frequen-
cy) the pole will be and hence the less signifi-
cant the effect of the pole on the imaginary
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Figure 10. The isomagnitude (solid) and isophase (dashed) curves of the
transfer function G(s) = (s2 + 2s − 1)/(s3 − 2s2 + s + 5). The two sets of
curves are perpendicular to each other. The root locus follows the isophase
curves that satisfy the condition �G(s) = 180◦ ± k360◦, k = 0,±1,±2, . . . .

The root locus is shown by a thicker line.
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Figure 11. (a) The 3-D magnitude Bode diagram (in decibels) of G(s) = (s2 + 2s − 1)/(s3 − 2s2 + s + 5). The peaks cor-
respond to the poles, and the wells correspond to the zeros. The green line shows the path to be followed by a ball released
from each of the peaks. This path corresponds to steepest descent. This example has three poles and two zeros. If three balls
are released simultaneously, the ball released from p = −1.1163 rolls directly into the well at z = −1 + √

2, while the other
two collide at s = −5.3561, with one of them rolling into the second well at z = −1 − √

2, and the other ball rolling to infinity
along the negative real axis. (b) View from the top. The path traced by the balls is the root locus, which is shown in Figure 10.
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axis (that is, the frequency response) will be;
see Figure 6(b).

We therefore see that the 3-D magnitude
Bode diagram provides a wealth of information
about the behavior of the transfer function,
which is not directly evident by looking at its
magnitude only along the frequency axis. The
3-D magnitude Bode diagram is also intimately
connected with the other classical control
design technique, that is, the root locus. This
connection is unraveled next.

The Locus of the Roots
Given the SISO plant with transfer function
G(s), the feedback control u = −Ky + r yields
the closed-loop system shown in Figure 7. The
closed-loop transfer function GCL(s) for the
system in Figure 7 is given by

GCL(s) = G(s)
1 + K G(s)

.

The poles of GCL(s) are given by the roots of
the characteristic equation

1 + K G(s) = 0. (14)

These poles depend on the value of the feedback gain K.
As the scalar K varies from zero to infinity the roots of (14)
follow a path in the complex plane, called the root locus. A
simple argument shows that all of roots of (14) start at the

poles of G(s) for K = 0, and converge to the zeros of G(s)
or to infinity along certain directions as K → ∞.

Equation (14) implies that K G(s) = −1 and therefore

�G(s) = 180◦ ± k360◦, k = 0,±1,±2, . . . (15)
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Figure 12. (a) The 3-D magnitude Bode diagram (in decibels) of G(s) = (s + 8)/[(s + 15)(s + 7)(s + 5)(s + 3)s] . Here
there are four more peaks than wells. The paths of five balls released simultaneously from the five peaks are shown in green.
Since there is only one well, four of the five balls roll down the slopes of the surface to infinity. (b) View from the top. The
paths traced by the balls form the branches of the root locus, which is shown in Figure 13.
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Figure 13. The isomagnitude (solid) and isophase (dashed) curves of
the transfer function G(s) = (s + 8)/[(s + 15)(s + 7)(s + 5)(s + 3)s] .
The root locus is shown by a thicker line. There are several branches,
four of which escape to infinity.
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The root locus path is therefore along isophase curves of
G(s), namely, those given in (15). As shown before, isophase
curves are normal to the level sets of |G(s)|. Since the roots
start from the poles and end up at the zeros of G(s) (or at
infinity), the branches of the root loci are paths of steepest
descent (that is, negative of the gradient) of |G(s)|.

This observation invites a nice interpretation of the
root locus paths on the surface of the 3-D Bode diagram.
Since these are paths of steepest descent they can be visu-
alized as the paths traced by a ball released from the top
of each peak (pole). The ball slides down the slope of the
peak towards a well (zero). The projection of this path on
the σ − iω plane is exactly the classical (two-dimensional)
root locus on the complex plane.

Numerical Examples

Example 1
Consider the transfer function

G(s) = s + 1
(s2 + 2s + 1)(s − 2)

, (16)

which has three peaks, located at the poles p1,2 = −1 ± i,
p3 = 2, and one well located at z1 = −1. Figure 8 shows the
level curves of |G(s)| on the complex plane along with the
isophase curves. The 3-D surface of |G(s)|dB and the corre-
sponding root locus paths are shown in Figure 9(a). Figure
9(b) shows the view from the top. Comparing with Figure 8
we see that these paths coincide with the classical root
locus plot.

Example 2
Consider the transfer function

G(s) = s2 + 2s − 1
s3 − 2s2 + s + 5

. (17)

This transfer function has two zeros located at z1,2 =
−1 ± √

2 and three poles located at p1,2 = −1.5582 ±
i1.4321 and p3 = −1.1163. Figure 10 shows the level curves
of |G(s)| along with the isophase curves. The 3-D surface of
|G(s)|dB and the corresponding root locus path are shown
in Figure 11(a). Figure 11(b) shows the view from the top.

Example 3
Consider the transfer function

G(s) = s + 8
(s + 15)(s + 7)(s + 5)(s + 3)s

. (18)

The 3-D Bode surface plot along with the paths of steepest
descent are shown in Figure 12. This example has the
rather interesting root locus shown in Figure 13. Since

there are four more poles than zeros, there are four
branches in the root locus that escape to infinity.

Conclusions
We have shown that there is a close connection between
the classical magnitude Bode diagram and the root locus
plot. The magnitude Bode diagram creates a 3-D landscape
of peaks and wells in the complex plane, and the root locus
consists of the paths of steepest descent from the peaks to
the wells in this landscape.

Although Bode diagrams and root locus plots have been
at the forefront of control system education, their relation
does not seem to be widely known. In fact, this link between
Bode and root locus plots is unfortunately missing from vir-
tually all undergraduate control textbooks. The purpose of
this short note is to bring this connection into new light, and
provide an incentive to educators to delve deeper into the
seminal work of the pioneers in the field, since there is more
to classical control theory than meets the eye.
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